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l. Introduction

A.  Numericd Methods or Numerical Andyss
1.  Numericd Andyss

a  Ddlinition

“Concerned with solving mathematical problems by the operations of arithmetic.” That is, we
manipulate (+ /-, ,, , etc.) numerical vaues rather than derive or manipulate andytica

mathematic exprons(di, opix.€*,x°, Inx, etc.).
X

We will be dedling dways with approximate vaues rather than exact formulse

b. Higory
Recdl the definition of a derivaivein Caculus:
i: lim — =g(x)
dx DeoDx
where Df = f (x,) - f(x;) and Dx =X, - % . Wewill work it backwards, usng (;i @%
X

In fact, before Newton and Lebnitz invented Cdculus, the numericad methods were the methods.
Mathematica problems were solved numericaly or geometrically, e.g., Kepler and Newton with
their orbits and gravity. Many of the numerical methods gtill used today were developed by
Newton and his predecessors and contemporaries.

They, or their “computers,” performed numerica caculations by hand. That's one reason it
could take Kepler so many yearsto formulate his“Laws’ of planetary orbits. In the 19" and
early 20" centuries adding machines were used, mechanica and electric. In business, aso,
payroll and accounts were done by “hand.”

Today, we use automatic machines to do the arithmetic, and the word computer no longer refers
to a person, but to the machine. The machines are cheaper and faster than people, however, they
gill have to be told what to do, and when to do it—computer programming.

2. Newton's Method for Solving a Nonlinear Equation—an example

a  Numerica solution
Let’s say we want to evaluate the cube root of 467. That is, we want to find avalue of x such

that x3 = 467 . Put another way, we want to find aroot of the following equation:
f(x)=x3- 467=0.



If f(X) were agraight line, then
af (x = xo)
dx

£ | f(x)="f(x)+ =0. Infact,

f(x,)! 0, butlet’ssay that f(x,) @0 and
; solvefor X;.
2 _ o fa)- %) f (%)

¥ : dx

! _ df (x =
Notethat weareusing f &x,) = % :

Having now obtained a new estimate for the
root, we repeat the process to obtain a sequence
of estimated roots which we hope converges on
the exact or correct root.

etc.
In our example, f(x)=x>- 467 and f €x) = 3x2. If wetake our initial guessto be x, = 6,
then by iterating the formula above, we generate the following table:

i X f(x) f &€x)
0 6 -251 108
1 8.324 109.7718 207.8706
2 7.796 6.8172 182.3316
3 7.759 0.108 0.0350
f(x,) . - 251
X =6- == =8.32407
1 @% - f6€x,) 108
f(x) _ 109.7768
X =8.32407 - ————= =7.79597
2 @ - fdx) 207.8706
f(x,) _ 6.817273
X =7.79597 - ———="= = 775858
3 @ f€x,) 182.33156

[Note: The pocket calculator has a (y*) button, but acomputer may do x >x xx to get X°.]

b.  Andyticd solution
How might we solve for the cube root of 467 andyticdly or symbolicaly? Take logarithms.

X3 = 467
3In x=1n 467
Inx= E In 467

3



In467
X=e 3 =7.758402264. ..

We used the (In) button on our pocket calculator, followed by the (€°) button. In earlier times,
we' d have used log tables. But, whence cometh those tables and how does the calculator
evaluate In 467 or e#04887

3. Seies
Inx= (X- 1)- %(X- 1)2 +%(x- ]_)3+...

X x> X
dnx=x-=+"—- —+...
3 9 7
2 3 44
et =+ X+ —+—+—+...
2 3 4

Theinfinite series are exact. However, in practice we dways keep afinite number of terms. In
principle, we can achieve arbitrary precison, if we have the necessary patience. Pocket
caculators and computer programs add up enough termsin a series to achieve a Specified
precison, say 8 or 16 sgnificant digits.

4, Error

In this context, the term error does not refer to amistake. Rather, it refers to the idea of
devidtion or of uncertainty. Every measured valueis uncertain, according to the precison of the
measuring ingrument. Every computed vaue is uncertain, according to the number of
sgnificant digits carried dong or according to the number of terms retained in the summeation of
aseries. Consequently, al numerica solutions are gpproximeate.

Oftentimes, in discussing an example problem, the correct exact solution isknown, so it is
possible to determine how an gpproximate numerica solution deviates from that exact solution.
Indeed, agorithms are often tested by applying them to problems having known exact solutions.
However, in red life, we don’t know the correct exact solution. We can’t know how far our
gpproximate solutions deviate from the correct exact unknown solution. In other words, we have
to approximate the solution to a problem, but aso we can only edimate the error.

Fortunatdly, we have means of estimating error. A goodly portion of the discussonin a
Numerica Methods textbook is devoted to rigorous estimation of error. In this course, we won'’t
concern oursalves with a detailed discussion of error andysis. Nonetheless, we want to be
adways aware of the error issue, kegping in mind at least quditatively the limitations of a

numerica solution. From time to time in the paragraphs that follow some aspects of the error
involved with a particular dgorithm will be briefly discussed.



B. Progranming

The computer carries out the tedious arithmetic, but it must be told what to do. That isthe
function of a computer program. A program may be written in one of any number of
programming languages, however there are certain features or issuesthat al languages havein
common.

1.  Program Desgn
a  Stages
Conception—define the problem
Develop the dgorithm—map out or outline the solution
Code—uwrite the program
Debug & verify—trace the program; perform trid runs with known results; correct logicd
& syntax errors

b.  Building blocks
Sequentia operations—ingtructions done one after the other in a specified order
Branching operations—selecting dternative sequences of operations
L ooping operations—repeating subsets of operations
1/O operations—reading and writing data
2. Branching
a  Simpleyesor no—sdect between just 2 dternative actions
b.  Nested branches—a sequence of decisions or branches; decision tree
Cc.  Select case—more than two dternative actions
3. Loops
a.  Counted loop—a section of code is executed a specified number of times

b.  Conditiona loop—a section of code isiterated until a specified condition is met

c.  “Infinite loop—the condition for ending the loop never is encountered, so the program
never ends
4. 1/O

a  Input—keyboard or datafile

b.  Output—monitor, outpuit file, printer; numbers, text, graphics



5. Precision Issues

a  Binary

The computer does its arithmetic with binary numbers, that is, base-2. E.g., 0, 1, 10, 11, 100,
101, 110, 111, etc. We are accustomed to working and thinking with base-10 numbers. In
producing the machine language code (the * executable’) and carrying out cdculaions, dl
numerical values are trandaed from base-10 to base-2 then back again for output. Usualy, we
don’t need to care about this. However, it can be a source of loss of precision in our numericd
vaues because the machine stores values with only finite precison.

b. Precison

A snglebinary digit (O or 1) iscdled ahit. Eight bits make up abyte. Within the machine, the
unit of information thet is trandferred at one time to/from the CPU and main memory iscdled a

word. The size of aword, or the word length, varies from one machine to another. Typicaly,
it'll be from 4 to 64 bits. A 4-byte word contains 32 hits, €tc.

One memory cell or memory location holds one or more words. Let’s say it's oneword, or 4
bytes. Whatever information (number) is stored in one such memory cdl must be expressble as
asgtring of 32 bitsand no more. For instance, a non-terminating binary fraction will be

truncated, e.g., (0.1)10 = (0.00011001100110011. . .)2. Only 32 digitswill be stored in memory.
When trandated back into decimal, the number will be (0.09999997),0, not (0.1)10. Smilaly,

the finite precison places alimit on the largest and the smdlest numerica vaue that can be

gored in amemory cAl.

In the back of our minds, we dways remain aware of the physicd limitations of the machine,

6.  Debugging

When syntax errors are al diminated, the program may very well run smoothly to completion.
Perhaps it produces results which are clearly absurd; perhaps the results gppear quite plausible.
A programmer must alway's take steps to convince itsdf that the program is working correctly;
the temptation to assume must be resisted.

One of the mogt insidious assumptions is thet the program is doing whet the programmer
intended it to do. Perhaps, atyping error has produced a statement that has no syntax error, but
does a different operation from that intended. Perhaps the logical sequence of steps written by
the programmer does't accomplish the task intended by the programmer. Thiswhy program
tracing is o important, why it is essentid to insart print satements al through the program to
display the intermediate vaues of variables, why it is essentid to check and double check such
things as argument lists and dimensions and the vaues of indices—checking not what the
programmer intended, but what the program actually does.

The other, dmost easier, agpect of debugging involves gpplying the program to a problem whose
solution is dready known. It dso involves repeating a numerica solution with different vaues

of various parameters such as step Sze and convergence tolerance. It involves comparing a
numerica solution for congistency with previous experience.



I[I. Fortran

A. Congantsand Variables [Chapters 2 & 8]

In Fortran, there are five types of data: integer, real, complex, character and logical.
1. Condants

Congtants are values that do not change.

a Integers

Aninteger isa+/- whole number, such as 8 or =379 or 739238. The maximum number of digits
dlowed is machine specific, depending on the word length of the machine. Integer constants are
never displayed with adecima point. In contrast to some other programming languages, Fortran
trests numbers with decimd points differently from numbers without decima points.

b.  Red numbers

Fortran usestheterm real to refer to numbers that may have afractiona part such as 65.4 or
0.00873, not to refer to a number whose imaginary part iszero. A redl number aways has a
decimd point. Again, thelargest and smdlest dlowed numerica vaue is machine dependent. A
red congtant is stored in exponentid or scientific format—as area mantissa< 1 and an integer
exponent: 0.7368x10%*. The constant may be displayed in either exponentia or decima form:
37.67x10°° or 0.03767.

c.  Complex congtants

In Fortran, the term complex refersto anumber having both areal and an imaginary part. A
complex congtant is stored in the form of two red congtants, in two separate memory cells—one
for the red part and onefor the imaginary part, in kegping with the mathematica definition of a
complex number asan ordered pair of numbers.

d. Chaacter congants

Character constants are aso known as character strings. The character string is a sequence of
aphanumeric characters enclosed in single quotes: “‘Now isthetimefor dl...” or ‘3 or ‘x =".
Noticethat ‘3 isacharacter constant while 3 is an integer constant.

e. Logicd congants
There aretwo logical congtants: .TRUE. and .FALSE. Notice the leading and ending periods.
Logical congtants and logica operators are enclosed by periods.

2. Variables

Numericd vaues are stored in memory cdls. Each memory cell is assgned a unique address so
that the program may refer to each cell. With congtants, the contents of the memory cells do not
change. However, the contents of a cell associated with a variable may change as the program
executes.



a.  Vaiable names and memory cdls

In the Fortran program, each variable is given aname. That name is associated uniquey with
one memory cell (or two in the cases of complex and double precison variables). The machine
maintains a reference table containing every congtant and variable name aong with the memory
address(es) assigned to each.

b. Daatypes
A variableis defined or declared to be of aparticular data type, and stores numerica vaues of

that type only. The mgor datatypesin Fortran are integer, real, double precision, complex,
character, and logical. Double precison data has twice the number of digits as norma red or
single precision data. Therefore, a double precison value occupies two memory cells.
Mismatched datawill be trandated into the data type of the variableit’s being stored in. For
instance, if we attempt to store the value 45.678 in an integer varidble, the fractiond part will be
truncated, so the value becomes 45. Likewise, an integer such as 567 becomes ared vaue
(567.0) if stored in ared varidble.

c. Assgnment Satements

The program ingruction for soring anumerica vauein aparticular memory cdl iscdled an
assignment statement. Commonly, such an ingtruction is represented symbolicaly as 386 ® jot.
In English, this says “ store the integer value 386 in the memory cdl associated with the variable
namejot.”

In Fortran, the symbol for the assgnment operation is the equa sgn and the line in the program
code would be jot = 386. Keepin mind that is not the same meaning as the mathematica
gatement of equality. jot = 386 does not mean “jot equals 386.” The arithmetic assignment
statementsin a Fortran program resemble mathematica equations, but they are not equations.
They are ingructions for the machine to carry out certain arithmetica operations and store the
result in a goecified variaole.

d. Vaiadenames

There are regtrictions on what string of characters may be used as a variable name. Origindly,
the variable name was restricted to no more than 6 characters. Some implementations of Fortran
dlow longer varigble names. Only dphanumeric characters are dlowed. Thefirst character of
the name must be aletter. Usudly, no ditinction is made between upper and lower case—
Fortran is case insensitive

Unless otherwise declared, variables beginning with the lettersi through n are assumed to be of
the integer data type, while names beginningwitha—h & o0 —zare assumed to bereal. These
assumptions are caled implicit data typing. The implicit data typing is overridden by any
explicit data type declaration.




B. Statements

A statement isasingleingruction. There are severd types of statementsin Fortran.

non-executable executable
declaration assgnment
externa if
dimenson goto
common stop
end do
parameter i/o statements
data return
format cl

1. Non-Executable

Non-executabl e statements are not executed or performed when the program is running. They
are implemented during the compiling step, when the Fortran code is trandated into the machine
language. Usudly, non-executable statements (except for END) are located at the top of the
program code, or programlist. Some statements must gppear a the beginning of thelist, others

may appear a any placein the program.

a Declaration
Declaration statements specify the data types of the variables.

b. Parameter
The PARAMETER gsatement in effect defines a variable name to be a congtant.

C. Dimenson and Common
These satements define what are called subscripted variables, which are like matrices.

d. Daa
The DATA daement isused to giveinitid vauesto variables.

e End
The END statement signdsthe end of a program block or module.

f. Externd
The EXTERNAL satement identifies a subprogram or module thet is defined outside of the
main program.

g Format
The FORMAT statement specifies how output isto be displayed.

10



2.  Executdble
Executable statements are ingtructions that are carried out when the program is running.

a  Assgnment
An assgnment statement causes the vaue on the right side of the equa sign to be stored in the
location identified with the variable name on the left Sde of the equa sign. The left Sde must
adways be agngle varidble name. Theright Sde may be an expresson or a congtant or asingle
variable name. For instance,

ex = 47.0* 9n(theta) why = sgrt(why) + 7.0 zed = 0.9805 que = zed

b. GoTo
A GOTO daement transfers control to a specified program statement. The GOTO may be
conditiona or unconditiona. The statement may appear as two words (go to) or as one word

(goto).

C. Do
The DO gatement sgna's the beginning of ado-loop, which isa program block that is executed
multiple timesin arow.

d. Read, Print, Write
These stlatements are used to put data into or out of the program.

e Stop
The STOP gtatement terminates execution of the program. A STOP statement may appear
anywhere in the program and there may be more than one STOP statement.

f. Return
The RETURN statement gppearsin a subprogram or module and has the function of returning
control to the calling program or module.

g ddl
The CALL statement transfers contral to the particular kind of subprogram called a subroutine.

3. Keyboarding

Higtoricdly, Fortran statements were punched on computer cards (Holerinth cards), one
datement per card. The physica limitations of those cardsis il reflected in the restrictions
placed on the keyboarding of Fortran statements:

i) the satement mudt lie entirdy in columns 7 thru 72;

i) column 6 is reserved for a character designating continuation of a satement;

i) ac or C placed in column 1 designates a comment line;

iv) statement |abels are placed in columns 1 through 5;

v) blank spaces within a tatement are ignored.

11



C. Input and Output [Chapter 3]
Two kinds of input & output are defined: list directed and formatted.
1. Listdirected

a  Reading—freeformat

READ *, varlvar2,va3,...
The vaues are read from the keyboard—just keyboard the numbers deimited by commeas or
gpaces and end with the ENTER (or RETURN) key. The numbers needn’t be entered al on one
ling; however, each READ gtatement starts reading from anew line. The numbers can be
entered in integer, decima or exponentia form. Character data or logicd data can dso be
entered, if the corresponding variable has been so declared.

b.  Printing—freeformat

PRINT, * varlvar2var3,...
Vaues are printed to the monitor, preformatted. The print list may aso contain congtants. Each
PRINT statement beginsanew line or anew record. If the record exceeds the width of the
monitor screen, the record is continued on the next line,

2. Formatted 1/0O

With formatted /0O, we specify how the output is to appear: the spacing, number of digits
displayed, etc.

a  Syntax of aFORMAT statement

d format(ccc,specifierl,specifier2,...)
The d isthe satement label that identifies the format satement. The ccc stands for the carriage
control character. The specifier (also known as an edit descriptor) is acode that specifies how a
vaueisto be printed. There must be one specifier for every variable or congtant in the print ligt.

b.  Formatted output—using the edit descriptors
PRINT d, varlvar2var3,...
d FORMAT(1x,specl,spec2,spec3,...)
The specifier or descriptor must match the data type of the variable in the order that the variables
are ligted, otherwise gibberish will be printed out.

If the field width (w) is not large enough, then a string of asterisks (*) are printed. It's advisable
to use E-format for al red variables when the program is being developed.

If theligt of specifiersis shorter thanthe print list then the computer Sarts over at the beginning
of the format lig.

A FORMAT gaement may be placed anywhere in the program module. Any number of output
(PRINT or WRITE) statements may use the same FORMAT statement.

12



Formatted input can be used also, but why bother?

c.  Edit descriptors
Each printed valueis said to occupy acertain field, that is, a certain number of columns. Inthe
following table, w = the width of the fild and d = the number of digitsto display.

edit descriptor description
Iw integer vaue
Fw.d red vduein decimd form
Ew.d redl vaue in exponentid form
Dw.d double precison vaue in exponentid form
Gwd red vauein “generd purpose’ form
Aw character vaue
rX an r number of blank spaces
Tc tab to column ¢
TRs tab right by as s number of spaces
TLs tab left by an s number of spaces
/ dart anew line or record
r( ) repeat () r times
“text’ character drings

3.  Filel/O[Chapter 9]

a  Opening and Closing units

OPEN(n/file="filename') and CLOSE(n)
In this context, the word unit refersto I/O unit or device. An 1/O device might be the monitor,
the keyboard, a disk file, a punched card reader, a punched card puncher, ateletypewriter, aline
printer, a computer port, and so on. Mast commonly, it'll be the monitor, keyboard or adisk file.
Each device has to be given a unit number (n) and aname (filename). That is the purpose of the
OPEN statement.

b. Reading
Each READ staement starts with the next new record or line. There isfree format reading
READ(n*) varlvar2var3,...
and formatted reading
READ(nd) varlvar2vas,...
We don't usualy bother with formatted input. However, some commercialy produced programs
require formatted input.

c.  Writing
Each WRITE statement starts anew record. Again, thereis free format writing
WRITE(n,*) varlvar2var3,...
and formatted writing
WRITE(n,d) varlvar2va3,...
d FROMAT(1x,......... )

In contrast to reading, we normaly do use formatted writing so that output is displayed in an
attractive and legible form.

13



d. Daafileissues

1) sequentia vs. direct access
Mogt often input files are read line by line from the top to the bottom. Thisisreferred to as
sequential access. The program cannot go back and forth within the datafile. In adirect access
file, specified records are accessed in any order, usudly identified by arecord number. Direct
accessis aso known as random access.

i) open statement parameters
There are some additiona parameters that may be used in an OPEN statement.

ERR=d transfers control to statement d if an 1/0 error occurs
IOSTAT=integer variable name stores the value of the error code IOSTAT
ACCESS ‘sequentid’ or ‘random access

i) read statement parameters
There are some additiona parameters that may be used in aREAD statement.
ERR=41 transfers control to statement 91 isaread error occurs.
END=42 transfers control if the end of the datafile is encountered.
The END parameter is particularly useful when reading a data file whose length is unknown. I
the END parameter is not present, the program will stop if an end of file is encountered.
iv) datafiles
Datafilesare plain text files. So, for instance, if you use aword processor to cregte an input file,
be sureto save it asplain text. Likewise, output files can be subsequently edited with aplain text
editor, such as NotePad. Of course, plain text editors prefer to attach the .txt extenson. A data
file can have any 3-letter extenson you plesse. A Fortran source file, which isaso aplain text
file, must have the .for extenson.
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D. Functions and Subprograms [pages 55 57 & Chapter 7]
In Fortran, program modules are cdled functions and subprograms  There are severd types of
program modules.

1. Functions

a  Intringc functions
A mathematica function, such as €, is evauated by summing asaries. One could write ones

own subprogram to add up the series expansions of €, Sn(x), In(x) or Jx , etc. However, some
common functions are aready done in Fortran. Those are the intrinsic or built-in functions such
as SQRT(x), EXP(x), SIN(x) and so on.

b.  Statement function

A statement function is a one-line subprogram defined by the programmer. 1t's a non-executable

statement, so it must appear at the top of the program module, before the first executable

statement and following the DIMENSION, COMMON, DATA, and DECLARATION

datements. A statement function must have at least one dummy argument. It may have severd.
FUNC(X) = 37.0* X + TAN(X)

Later in the program, the function isinvoked just like an intringc function, thudy Z = FUNC(B).

The function may have any name not being used as avariable name. If a statement function is

given the same name as an intringic function, it will supercede the intringc function.

c.  Function subprogram

A function subprogram isamultiline user-defined function. The function subprogram is sdf-
contained in that it must have its own type declaration Statements, its own dimensioning
Statements, its own data statements, and so on. Rather than a STOP statement, the function
subprogram must have & least one RETURN statement, which has the effect of returning control
to the program module caling the function. There may be STOP statementsin afunction
subprogram.  The function subprogram returns to the caling module a single vaue that is stored
in avariable name of the gppropriate datatype. The name of that variable must be the same as
the name of the function. The function subprogram must have a least one dummy argument.
However, that dummy argument need not actually be used to pass data to the function. Inthe
cdling module, the function subprogram is invoked in the same manner as an intringc function.

d.  Subroutine

The subroutine isredly a complete independent program. 1t may have STOP statements, but
like the function subprogram it must have at least one RETURN statement. A subroutine may
return to the calling module any number of vaues, not just asingle one. It may return no vaues
a al, but smply carry out some task such as printing output. Information may be conveyed to
the subroutine through an argument list and/or through COMMON statements. The subroutine
may have no argumentsat dl. A subroutine isinvoked by the CALL statement.
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Fortran sddight #0

Statement labels and GoTo statements and DO statements [page 70s; 101 — 103; Chapter 5]
There are no line numbersin Fortran. Any program statement may be given a statement label or
a statement number. The statement labdl is used to refer to a program statement within the
program. Statement labels must be unique and must gppear in the first 5 columns of the line.
However, they need not be in any particular order.

A GoTo gatement isan unconditional transfer of control asin GoTo 304, which means that the
statement labeled 304 will be executed next, no matter what. The GoTo statement must include
asatement label, pointing to an executable line which gppearsin the program.

A DO gatement beginsa Do Loop. There are two forms of Do Loop. One makes use of a
statement [abel to define the end of the code to be iterated, the other form uses the End Do
statement for the same purpose. For example

Do400i=1,10 Doi=1,10

400 Continue EndDo

It is permitted to transfer out of a Do Loop, but not into one. Do Loops can be nested.
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[11.  Numerical Solution of Nonlinear Equations
A. NonLinear Equations—one & atime

There are closed form solutions for quadratic and even 3 degree polynomia equations. Higher
degree polynomias can sometimes be factored. However, in generd thereisno closed form
andytica solution to non-linear equations.

1. The Problem

a Roots & zeroes Fp
We seek tofind x suchthat f (x) =0 or

perhaps such that f (x) = g(x) . Inthe —
latter case, we merely set =

h(x) = f(X) - g(x) =0. Wearelooking \_ ‘/ &
for aroot of theequation f(x)=0 ora

zero of thefunction f(x).

b.  Grgphicd solution

Plot f(x) vs. x—observe where the graph
crosses the x-axis or plot f(x) and g(x) vs.
x and observe where the two curvesintersect. A graph won't give a precise root, but we can use
the graph to choose an initid estimate of the root.

2. Bisection
a Saup

For brevity, say f, = f(Xo) and f1 = f(x1), €tc. LGt
Say further that X =a isthe desired root.

The graph shows usthat f, xf; <O because
f(x) crosses the x-axis between [Xo,X1]. \ L

. ;f= - i g
b.  Algorithm ‘ \
Let usfind the midpaint of [xo,x1], and call it

b.

i)b=X°T+X1 adthen f, = f(b)
if) Does f,, @07 If 0, quit ‘causea @b.
i) If not, then
if f,xf, <0,thenset x,=band f, = f,
or
if f, xf, <0, thensetinstead x, =b and f, = f, .

17



: _ X, + X
iv) Is|x, - X,|£€? If s, quit and set & :OTl.

V) If not, then repest beginning with sep (i).

It iswell aso to count the iterations and to place alimit on the number of iterations that will be
performed. Otherwise, the program could be trapped in an infinite loop. Also, itiswdl to test
for thecases f, xf, >0 and f; xf, >0. It may be that the function does not cross the x-axis

between f, and f1, or crosses more than once.
3. Newton’s Method or the Newton-Raphson Method

a  Taylorsseies
Any wdl-behaved function can be expanded in a Taylor’'s series:

0= F00) (6 50) ) + (X 3 ) 4
Let'ssay that x is“closg”’ to X, and keepjusttheflrsttwoterms
F(X)» f(%) +(X- %) f €x,)
We want to solve for x such that f(x) = 0
F (%) +(x- %,) F§x;) =0
X=X, - (%)
f&x,)
In effect we have approximated f(x) by agtraight ling; x is the intercept of that line with the x-
axis. 1t may or may not be a good approximation for theroot a .

( - Xo)3

f &%)
3

b.  Algorithm
i) choose an initid estimate, X;
i) compute f(x;) and f €x;)
iif) compute the new estimete: X, = X - f06)

F&x)

iv) reurnto sep (i) withi =i + 1
c. Comments
It turns out that if theinitial estimate of the root is a good one, then the method is guaranteed to
converge, and rapidly. Evenif the esimate is not so good, the method will converge to aroot—
maybe not the one we anticipated.

Also, if thereisa f ¢=0 point nearby the method can have trouble. 1t's dways a good thing to
graph f(x) fird.

4. Secant Method

a  Fnitedifferences
A finite difference is merely the difference between two numerica vaues.

18



DX =X, - % or DX=X1- X
Derivatives are approximated by divided differences.
f4x) @ Oia)- T09) _ Df
X = % Dx
We may regard this divided difference asan estimate of f ¢ at x; or at X;+1 or a the midpoint
between x; and X;+ 1.

b.  The Secant method
We smply replace f ¢ by the divided difference in the Newton Rephson formula

_ X - X1
Xivg = X - f(xl) f(xi)' f(xi-l)l

Noticetheindices i + 1, i, i — 1. With the Secant Method, we don’t use afunctiona form for
f ¢. Wedo haveto carry dong two vaues of f, however.

Care must betaken that | f (x;) - f(x.;)| not be too small, which would cause an overflow error
by the computer. Thismay occur if f (x.) » f (x._,) dueto thefinite precison of the machine.
This may aso give amisleading result for the convergencetest of | f(x;) - f(x.,)|. Toavoid
that, we might use the relative deviation to test for convergence.

|F(x%)- f(%.1)|

£
|f(Xi)| ©

c.  Compare and contrast
Both the Newton-Raphson and Secant Methods locate just one root at atime.

Newton: requiresevaluation of f and of f ¢ a each step; converges rapidly.

Secant: requires evauation only of f at each step; convergeslessrapidly.

5. Hybrid Methods

A hybrid method combines the use in one program of two or more specific methods. For
instance, we might use bisection to locate a root roughly, then use the Secant Method to compute

the root more precisely. For instance, we might use bisection to locate multiple roots of an
equation, then use Newton-Raphson to refine each one.
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B. Sysemsaof Nonlinear Equations

Consder asystem of n nonlinear equations with n unknowns.
f1(X1, X5, X3,...,X,) =0

fo (X, X0, Xg,...,%,) =0
fr (X, X, Xg,...,X,) =0

1.  NewtonRaphson

a Matrix notation

Let’swrite the system of equations as a matrix equation.
¢f, 0

_ S

f=€2U=0

—h ..
oOCC

=}

> (D> D
% =X DD

The unknowns form a column matrix dso. X = . We might write the systlem of equations

>

oc\oNnonoNnc/

g0

compactly as f (X) =0.

b.  TheMethod
The Newton-Raphson method for smultaneous equations involves evauating the derivative

matrix, F , whose eements are defined to be F;; = ﬂ If theinverse F~* exists, then we can
X

j
generate a sequence of approximations for the roots of functions {f;} .
X = X - F (%) xF (%)
At each step, dl the partid derivatives must be evaluated and the F matrix inverted. The
iteration continuesuntil dl the f; @0. If theinverse matrix does not exis, then the method

fals. If the number of equations, n, is more than a handful, the method becomes very
cumbersome and time consuming.

2. Implicit Iterative Methods

The Newton-Raphson method is an iterative method in the sense that it generates a sequence of
successive gpproximetions by repesting, or iterating, the same formula. However, the term
iterative method as commonly used refersto a particular class of dgorithms which might more
descriptively be cdled implicit iterative methods. Such dgorithms occur in many numericd
contexts as we' |l see in subsequent sections of this course. At this point, we apply the gpproach
to the system of smultaneous nonlinear equetions.
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a  Gened form
e u
& _ _
Leda = ga'zg be the solution matrix to the equation f (X) =0. l.e, f(@) =0. Now, solve

e u

énd
dgebraicdly each f; (X) =0 for x;. Thiscreatesanew set of equations, x; = F, (X9, where X¢
refersto the set of unknowns{x;} excluding x;. Algebraicaly, thislooks funny, because each
unknown is expressed in terms of dl the other unknowns, hence the term implicit. Of course,
what we redly meanis

ik+1 = F(Yk) .
Alternatively, in terms of matrix elements, the equeations take the form
X1 = F (Xypes Xopoe-- Xn) -

b.  Algorithm
In aprogram, the iterative method is implemented thudly:

1) choose an initia guess, X,

i) compute X, = F(X,)

i) test f(X,) @0

Iv) if yes st & = X, and exit

v) if no, compute X, = F(X,), €tc.

c.  Convergence
We hope that lll@l’T!é X, =& . For what conditionswill this be true? Consider aregion Rinthe

space of {x;} such that |xj -a; | £ h for 1£ j £ n and supposethat for X in Rthereisa postive
1F (x)

ﬂxj
method will converge. What does this mean, practically? It meansthat if theinitid guess, X, , is

“close enough” to &, then the method will convergeto & after some number, k, of iterations.
Big dedl.

n
number m such that §
j=1

£ m. Then, it “can be shown” thet if X, liesin R, theiterative
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Fortran Siddight #1
|F statements [ Chapter 4]

There are two varieties of |F statements. The one liner, and the IF-THEN-EL SE block. In both
cases, adecison on what action to take next is made on the basis of some logical relation.

A logicd relation is a satement which may betrue or false. Logica or relationd operators[.OR.
AND. .LE. LT. .GE. .GT. .NE. .EQ.] are used to form logical relations. For instance, the
datement sgrt(x).eg.3 isalogica relation. If the squareroot of x is 3, then the relation has the
logicd vdue . TRUE. If x = 16, though, then the relation has the logica vaue .FALSE.

One-liners
IF( logical relation ) action statement

If thelogical relation in the parentheses is . TRUE. then the action statement is executed. If the
logical relation is .FALSE. the action statement is not executed. In either case, execution
continues with the line following the IF statement, unless the action statement, when executed,
redirects program control to another satement. In fact, such redirection of control isacommon
use of aoneliner IF. The action statement may be any Fortran executable statement such as
assgnment, 1/0O, or GoTo but not a DO statement or another IF statement.

|F-THEN-EL SE block

The oneliner islimited to asingle action statement when thelogicd rdaionis . TRUE. ThelF
THEN-EL SE congruction alows more flexibility is setting up dternative blocks of program
statements.

IF(logical relation ) THEN
{ block A }

ELSE
{ block B }

END IF

Inthis casg, if thelogical relation is. TRUE., then the program code Block A is executed. If the
logical relationis.FALSE., then the code Block B is executed. Each code block may be asingle
executable statements or many executable statements. Once Block A or B is executed, the
program continues with the statement following the END |IF statement.
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Additiond logica branches may be nested within the I-FTHEN-ELSE. Thus

IF( logical relation 1) THEN
{ block A }

ELSE IF( logical relation 2) THEN
{ block B }

ELSE IF( logical relation 3} THEN
{ block C}

ELSE
{ block D }

END IF

Obvioudy, it's easy to become tangled up in these nested EL SEs.
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V. Linear Algelra
A.  Marix Arithmetic

The use of matrix notation to represent a system of Smultaneous equiations was introduced in
section I11-B-1 above, mainly for the sake of brevity. In solving Smultaneous linear equations,
matrix operations are centrd. There follows, therefore, abrief review of the sdient properties of
matrices. Fuller discusson of the properties of matrices may be found in various texts,
particularly Linear Algebratexts.

1. Matrices

A mdrix isan n x m array of numbers. In these notes amatrix is symbolized by aletter with a
lineon top, B ; nisthe number of rows and m isthe number of columns. If n = m, the matrix is
said to be asquare matrix. If the matrix has only one column(row) it is said to be a column(row)
matrix. Thejth element intheith row of amatrix isindicated by subscripts, by;. Mahematicaly,
an entity like amatrix is defined by alist of properties and operations, for instance the rules for
adding or multiplying two matrices. Also, matrices can be regarded as one way to represent
members of agroup in Group Theory.

& b, bz by €% U
D — u o — u
B = 2021 by, bys b24lj X= gxz 0
B3 by Dby byf &

2. Addition & Subtraction

a Definition

The addition is carried out by adding the respective matrix e ements.
C=A+B
Cjj =& +hby

b. Rules
The sum of two matricesis also amatrix. Only matrices having the same number of rows and
the same number of columns may be added. Matrix addition is commutative and associetive,

A+B=B+A (A+B)+C=A+(B+C)
3. Multiplication
a  Ddinition
C=AB
Cij = a aiby = &by + @by +aghsy + -
Kk

b. Rules
The product of two matrices is also amatrix. The number of dementsin arow of A must equa
the number of dementsin a columnof B. Malrix multiplication is not commutative.
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AB! BA
A matrix may be multiplied by acongtant, thudy: ¢;; = g>a; . Theresult isaso amatrix.

4. Inverse Matrix

a  Unit matrix
The unit matrix isasquare matrix with the diagond e ements equa to one and the off-diagona
edementsdl equd to zero. Here'sa3x3 unit matrix:

b. Inverse

Theinverse of amatrix, B, (denoted B™!) isamatrix suchthat BB'1=B !B =U . The
inverse of a particular matrix may not exist, in which case the matrix is sad to be sngular.

The solution of a system of Smultaneous equations in effect is a problem of evauating the
inverse of a square matrix.
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Fortran Siddight #2
Dimensions, Arrays, and Matrices [Chapter 6; pages 223 — 224

In Fortran, amatrix is caled adimensioned variable, or an array, or a subscripted variable. The
DIMENSION statement specifies the size of an array and the number of indices or subscripts.

Consder atwo dimensiona matrix, B . An dement of that matrix might be written asbyj. Inthe
Fortran code this becomes b(i,j). An dement of aone-dimensond matrix X (either arow or
column matrix) is represented by x(i).

For instance, the following DIMENSION statement sets up one square matrix and two column
matrices.

DIMENSION b(20,20), x(20), ¢(13)

Notice thet the array names are ddlimited by commas. The numbersin the parentheses are upper
limits on the ranges of the indices. Therefore, both the indices of the variable b range from 1 to
20. Theindex of varigble c rangesfrom 1 to 13. Later versons of Fortran dlow array indicesto
be negative or zero. DIMENSION b(0:19,0:19), x(-3,16). Referring to an index vaue outsde
the range specified in the DIMENSION statement can lead to “unpredictable results”

The DIMENSION statement appears at the top of a program module, preceding any executable
satements. There may be more than one DIMENSION statement. The array names may be
liged in any order. Dimendioning is not global, so any program module that uses array variables
must have its own DIMENSION statement(s).

In Fortran, the addition or multiplication of matrices must be spelled out with DO loops. In other
words, there are no array operations.

Multiply a column matrix by a square matrix Multiply two sguare n x n matrices
DO 200i=1,20 DO 300i=1,n
c(i)=0.0 DO 300j=1,n
DO 100j=1,20 d(@i,j) =0.0
100 c(i) = c(i) + b(i,j)*x() DO 200 k=1,n
200 CONTINUE 200 d(i,j) = d(i,j) + a(i,k)*b(k,j)
300 CONTINUE

Multiply acolumn matrix by a congtant
DO 100j=1,n
100 d(j) = que*d(j)
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B. Smultaneous Linear Equations
1. TheProblem

a  Simultaneous eguations
We wish to solve asystem of n linear equationsin n unknowns.

by +bpX, +o- by X, = ¢
ba1% +byX, +--by X, =€,

bnlxl + bn2X2 *. bnnxn =G
where the {bj} and the {c} are constants.

b.  Matrix notation
The system of equiations can be written as a matrix multiplication.

ex U éc u & by - byu
é u é. u u
_ SC. _ b o b, s
B)?:E,Whereiz‘?x,u E:‘f—‘c,zlf andB:gj,21 22 Ay
e:u e u €: : oo u
é u é u a
e &ni anl bn2 bnnU
Whennissmdl (n £ 40, say) adirect or one-step method isused. For larger systems, iterative

methods are preferred.
2. Gaussan Elimination

In a one-step approach, we seek to evaluate the inverse of the B matrix.
Bx=¢C
B'Bx=x=B''C

The solution is obtained by carrying out the matrix multiplication B™'¢ .
a  Himination
Y ou may have seen thisin high school adgebra. For brevity’s sske, let’sletn = 3.

By1X +bioXs +Bi3X5 = ¢

Dy1%q + DX, +by3X3 = C,

B31%q +bgpX; +DgaXs =C3
In essence, we wish to eliminate unknowns from the equations by a sequence of dgebraic steps.

normdizetion i) multiply egn. 1 by - b1 L and add to egn. 2; replace egn. 2.
1

reduction i) multiply egn 1 by - b_l_ L and add to egn. 3; replace egn. 3.
1
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b11Xg +BoX; +bigXs = ¢
bg,x, +bfsx; = cf
bg,x, +bfxs = cf

b%
bg,
b11Xg +BoX%; +bigXs = ¢
bd,X, +bx; = cf
bfix; = c#
We have diminated x; and x, from egn.3 and x; from egn. 2.

i) multiply egn. 2 by - and add to egn. 3; replace egn. 3.

back subgtitution iv) solve egn. 3 for X3, subdtituteinegn. 2 & 1.
solve egn. 2 for X, subgtitute in egn. 1.
solve egn. 1 for x;.

b. PRvoting
Due to the finite number of digits carried along by the machine, we have to worry about the
rel ative magnitudes of the matrix eements, especidly the diagond dements. In other words, the

inverse matrix, B~ may be effectively singular even if not actualy so. To minimize this
possibility, we commonly rearrange the set of equations to place the largest coefficients on the
diagond, to the extent possible. This processis caled pivoting.

€g.
37X2 — 3X3 =4
19x1 — 2Xo + 48x3 =99
7X1 + 0.6x, +15x3 = -9
rearrange
19x1 — 2Xo + 48x3 =99
37X —3X3=4
7X1 + 0.6 +15x3 =-9
or

7X1 + 0.6x +15x3 =-9
37X2 - 3X3 =4
19x1 — 2%, + 48x3 =99

3. Matrix Operdtions

In preparation for writing acomputer program, we' |l cast the eimination and back subgtitution in
the form of matrix multiplications.

a  Augmented matrix
éb;; by, bz ciy
~_[B.~]— U
A= [B -C] = 8021 b, by €y

By by by Gof
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b.  Elementary matrices
Each sngle sep is represented by a sngle matrix multiplication.

The elimination steps.

. é U
g% o o el 0 0g
S=6-2 10 S=50 10 §=
‘:9811 0 15 8 B g
€ o 6 by g
& by bz qu
& cph-€ u
S35,5A =50 bg, bg cf
€0 0 b cfyg
Thefirst back subgtitution step:
e u
el 0 0y
_=A u
3-p 1oy
€ 0 —d0
e b
L 2011 by, b Clg
QS:S,5A=50 bg, b cfy
€001 x U

This completes one cycle. Next we eiminate one unknown from the second row using

et 0 0u

S,=0 1 -bgy

@ 0 14
. & by bz qu
SQ5S,5A=50 bg 0 cf
8 001 x f

¢ o ot

6—30 1 OH

‘e b

@ 0 1§
&y by, by cu

NcocNGccoconr e

Q.S.Q855A=¢ 01 0 % |
€ 001 x5 §
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This completes the second cycle. Thefind cycleis

el o
6l 0 - by él -b, Oy &, u
5=91 oY 5:=% 1 o g=%0 1
e a 5~ & u BTe v
00 1§ 0 0 1§ éo 0 10
& t

¢l 0 0 xu

~ssm~aARcsa _é a

ASSRLSQASSS =0 1 0 %y

0 0 1 xH

multiplicationsis Sgnificant. Naturdly, we want to automate this process, and generdizeto n
equations.

4. Gauss-Jordan Elimination

a  Inverse marix
We might multiply al the e ementary matrices together before multiplying by the augmented

matrix. That is, carry out the evaluation of B, then perform B™1A.

b.  Algorithm
k-1 i —
ay S |:k':'J k=1n
oAl y i=in

N = number of equations
k =index of the step or cycle
a; = elements of the origind augmented matrix, A.

For eachvalueof k, dothei = k linefird.
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c. Example
n=3andn+1=4

4Xq + X, +2X3 =16
Xy + 3%, + X3 =10
Xy + 2%, +5x5 =12

é 1 2 16y
_ ~_@& U
k=0 A=%l 3 1 104
g 2 5 12§
eg,fork=1i=1,j=1&j=4
123_:{)1: al :a_:&:E:AI.
. afl 14 a:l(.Jl 4
a7, =8z - 8@y =1- 14=0
& 1 1 U
XN
k=1 AC=@&0 i1 60
é 4 2
& £ 2 gl
E 4 2
é 5 38Q
1 0 = =~
g 11 113
k=2 A€¢=é0 1 2 A
é 11 11g
& o % 46
g 11 114
d 0 0 3
k=3 K@:go 10 23
€0 0 1 1§
&
- u
X= &
gly
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C. Iterative Methods
For n > about 40, the one-step methods take too long and accumulate too much round- off error.
1.  Jacobi Method

a  Recursonformula
Each equation is solved for one of the unknowns.

1
X = (Cl S PYCRN VPY SIS blnxn)_
by,
_ 1
Xy = (Cz - Dyyxg - bygXg - oo - bZan)_
b,
_ 1
Xn _(Cn - bnlxl_ bn2X2 -t bnn 1Xn—1)_
nn
e 0
¢ J -1 .
Inshort x; =¢Ci - @ by Xj+—,1=1,23,...,n
C j=1 +by
e it (%]

Of course, we cannot have bjj = 0 for any i. So before starting the iterative program, we may
have to reorder the equations. Further, it can be shown that if |by;| 2 b for each i, thenthe
method will converge, though it may be dowly. Here'san outline of the “showing.”

Thefird iteration is Xt =- AXO+V

>|

After severd iterations, x** =- Ax* +V X =- 5

N>
P>

x° + K---,§§\7:K"+l>‘<°+ﬁk\7

+

x
*
~
=

o5

Wewant lim A*x° =0, whichwill happenif —- £ 1.

k® ¥ i

b.  Algorithm
We need four arrays: X<, X¢*, B, and

Ko

3o
(@ e an} any eny end

N o

A

Firstly, select aninitid guess (k = 0) X° =

> (D> (D>
< -

X

Secondly, computeanew X (k +1=1).

8
o

k+1
X

I
DO O O
o
1
. 'QJOJ
i
X
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k+l_ K
Thirdly, test for convergence. | | k| | £ e. Noticethat dl the x; must passthe test.
Xi
If dl the x; do not pass the test, then repeat until they do.

C. FORTRAN
Four arrays. xold(n), xnew(n), B(n,n), c(n), where n isthe number of smultaneous equations.
Reed the equations and initid guess

read *,n
do97i=1,n
97 read*,(b(i,j),j=1,n),c(i)
read * ,(xold(i),i=1,n)
98 do99i=1,n
99 xnew(i) = xold(i)

Compute the new gpproximation

do 100 i=1,n

sum =0.0

do50j=1,n

if(j.eg. ) goto 50

sum = sum +b(i,j)*xold(j)

50 continue

xnew(i) = (c(i) —sum /(i)

100 continue

Test for convergence
do 200i=1,n
if( abs(xnew(i)-xold(i))/abs(xold(i)) .gt. eps) goto 98
200 continue
Put out the result
print *, xnew
stop
end
2. GaussSeidd Method

The Gauss-Seidel Method hopes to speed up the convergence by using newly computed vaues
of x; a once, as oon as each isavailable. Thus, in computing xnew(12), for instance, the vaues
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of xnew(1), xnew(2), . . ., xnew(11) are used on theright hand side of the formula. We till need
to keep separate sets of xnew and xold in order to perform the convergence tests.

read *,n
do97i=1,n

97 read*,(b(i,j),j=1,n),c(i)
read * ,(xold(i),i=1,n)
do99i=1,n

99 xnew(i) = xold(i)

98 do100i=1,n

sum=0.0

do50j=1,n

if(j.eq. ) goto 50

sum = sum +b(i,J)* xnew())
50 continue

xnew(i) = (c(i) —sum )/(i,i)

100 continue

do 200i=1,n
if( abs(xnew(i)-xold(i))/abs(xold(i)) .le. eps) goto 200
do 199 j=1,n
199 xold(j) = xnew())
goto 98
200 continue



Fortran Sidelight #3
1.  Subprograms[Chapter 7]
a  Functions

function name(argument list)
declaration statements
dimengion/common statements
data statements

name =
return
end

A function subprogram is invoked just like the built-in or intringc functions.
X = name(argument lit)

b.  Subroutines
Subroutines are salf-contained program modules.

subroutine name(argument list)
declarations statements
dimension/common statements
data statements

return
end

A subroutine isinvoked by a CALL statement. cal name(argument list)

2. Communication Among the Main and Subprograms

a.  Argument ligs[pages 219 — 221, 222]

Informetion is passed between program modules by argument lists. The variablesin an
argument ligt of a subprogram must match the argument list in the cdlling statement in number of

variables and data types and in the order in which the variables are listed. However, the
variables needn’t have identica names in the separate modules.
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b.  Common blocks [pages 225 -228]

Unlike some other programming languages, Fortran variables are local—they exig only in the
program modules in which they are declared or used. However, thereisaway to creaste alist of
globd varigbles, the common block.

A common block is created by the COMMON statement: COMMON varl, var2, var3,. . ., varN.
The variables in the common block will be available to dl program modules that contain the
COMMON statement. In other words, the COMMON statement must gppear in every program
module that needs access to those variables in the common block. On the other hand, the

variable namesin the COMMON statement need not be identica in the severa program

modules. The variables mugt be listed, though, in the same order and have the same data types,

etc., in every occurrence of the COMMON statement. |f avariable is passed to a subprogram
(function or subroutine) viaa COMMON statement, it is not dso incduded in an argument list.

The dimengions of an array variable may be specified ina COMMON statement, in which case
the same variable is not included in aDIMENSION statement.
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D. Applicaions
A couple of casesin engineering that give rise to Smultaneous linear equations.

1. BElectrica Circuit

o0V -

(7+2+6)x1 — 2% — Bx3 = 300
-2X1 + (245+4+1)X2 —4X3 — X4 =0
-6X1 —4Xxo + (4+9+6)X3 -9, =0
-Xo —9X3 + (9+1+11)X4 =0

a5 -2 -6 0 300U €26.50
é U & ol
_ %212 -4 -1 0oV .35¢
=€ U. oolution: x=€ U
&6 -4 19 -9 00 é13.30
e u € u
&0 -1 -9 21 0y .13
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V. Interpolation and Curve Fitting

Suppose one has a set of data pairs:
X f
X1 fy
X2 fa
X3 f3
Xm fm

wheref; isthe measured (or known) vaue of f(x) at xi. Wewould like to find afunction thet will
gpproximate f(x) for dl x in a specified range. There are two basic agpproaches. interpolation and
curve fitting.

A. Polynomid Interpolation

With inter polation, the gpproximating function passes through the data points. Commonly, the
unknown f(X) is gpproximated by a polynomid of degree n, pn(X), which is required to pass
through dl the data points, or a subset thereof.

1.  Uniqueness

Theorem: Given{x;} and {fi},i=1,2, 3, ..., n+ 1, thereexists one and only one polynomia of
degree n or less which reproduces f(x) exactly at the {x;} .

Notes
i) There are many polynomids of degree > n which aso reproduce the {fi} .
i) Thereis no guarantee that the polynomia pn(x) will accurately reproduce f(x) for
Xt ¥ . Itwill dosoif f(x) isa polynomia of degreen or less.

Proof: Werequirethat p,(x) =fiforali=1,2, 3,..., ntl Thisleadsto aset of Smultaneous
linear equations

2 n —
Ao tayX taXy +-tapX = f;
2 n _—
A, tyXo taXy +taX; = f,
2 n _
a, +a1Xn+1 +a2Xn+1+"'+aan+1 - fn+l

whichwe' d solve for the{a;}. Aslong asno two of the{x;} are the same, the solution to such a
set of amultaneous linear equationsis unique.

The ggnificance of uniquenessisthat no matter how an interpolating polynomid is derived, as

long asit passes through dl the data points, it is the interpolating polynomid. There are many
methods of deriving an interpolating polynomid. Here, we'll congder just one.
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2. Newton's Divided Difference Interpolating Polynomia

a  Divided differences
Thefirst divided difference is defined to be (notice the use of square brackets)

f[a,b]:%,alb

If f(x) isdifferentidble in the interval [a,b], then there exigts :
at |east one point between a and b a which ar) f[a,b]. e
dx =
In practice, we would take a as close to b aswe can (limited 7"5\1 :
by the finite precison of the machine) and say that £ f B
ff(x)»f[a,b]. T AR
L& s o=
Higher order differences are defined aswell:
order notation definition
0 f [x] f ()
1 f[XZ’Xl] f[xz]' f[Xl]
X %
Z f[XB’X27X1] f[xs'xz]' f[XZ'Xl]
X3- %
3 f[x47X3'X2’X1] f[x4,X3,x2]- f[X3,X2,Xl]
X4 %
n f[xn+1,xn,---,x2,xl] f[xn+1,xn,---,x3,xz]- f[Xn'Xn-li""X21X1]
Xne1 ™ Xg

b. Newton's divided difference formula
Build the formula up step by step:

i) two data points (X1,f1) & (X2,f2). Wewish to gpproximate f(x) for X3 < X < Xa.

Asafirg order goproximation, we use a straight line (p1(x) so that
t[x %] @f[x, %]
f(¥)-f ~f- T(X)
a
X' Xl C X2 = X

Solve for f(x)
f(x) @fy +(x- %) f[%, %] = p(¥)

i) Now, if f(x) isadraght line, then f(x) = p1(x). If not, thereisaremander, R;.
R(¥) = (- pr(¥)=F(x)- - (x- %) %, %] = (%= %)X~ xp) [X, Xz, %]
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We don't know f(x), so we cannot evaluate f[x,x2,x1]. However, if we had athird data point
we could approximate f [x, Xs, xl] @f [x3, Xy, xl] . Then we have aquadratic

f(X) @F; + (- %) %, %]+ (X - %)X~ %) f[Xg, Xp, %] = P2(X).

i) If f(x) isnot aquadratic polynomid, then there is sill aremainder, R..
Ry (x) = £(X) - p2(X)
To edimate R,, we need afourth data point and the next order divided difference. . .
f [X1X3'X21 Xl] @f [X41 X3y X2, Xl]

iv)  Jump to the generdization for n + 1 data points:
f(x) = pn(X) + Ry (X) , where
Pn () = f 3]+ (x= %) Flxo, 2] + (- 3)(%- %) f %6, %0, 3] +
et (X ) (X X)X Xg) e+ (K= Xo) F X X X X4

Noticethat i) p; = P, +(X- X)(X- X5)(X - xg)f[x4,x3,x2,xl],etc. and ii) the (x — x;) factors
are aso those of the previous term times one more factor.

Cc. Inverssinterpolation
The NDDIP lendsitsdf to inverse interpolation. That is, given f(x), approximate X. In effect, we
aresolving f(x) = 0 when f(x) isin the form of atable of data. Smply reverse the roles of the {f}
and the {x;} .

r(1)+1 il

x=pa(1) =8 i o 1O (00 1))+ f[1]

i=2 j=1
Set f(x) = 0 and evaluate X = py(0). In practice, with a Fortran program, one would just reverse
the data columns and use the same code.

d. Example
The difference table is computed thudy:

do50j=1,n+1
50 diff(j,1) =f(j)

do 200 j=2,n+1

do 100 i=1,n+1-j+1
100 diff(i,)) = (diff(i+1,j-1) — diff(i,]-1) )/( x(i+-1) —x(i) )
200 continue
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Divided Difference Table forn =6

X f fl] fl,] L P I R AP I . S IO | PR

1 -1.5 0.5 1.667 -2.583 1.583 -0.727 0.27

2 -1 3 -3.5 2.167 -0.96 0.353

2.5 0.5 -0.5 0.833 -0.233 0.1

~NO(OB~WIN P

3 0.25 0.75 0.367 0.017
4 1 13 0.4

4.5 1.65 1.7
5 2.5

The sixth degree polynomid congructed from thistableis
d <
Pe(X) = f[x1]+a f[xl,xz,---,xi]O(x- X;)-
=

i=2

Line by line, the Fortran might look like this:

fac=ex —x(2)

p0 = diff(1,1)

pl = pO + fac* diff(1,2)

fac = fac* (ex-x(2))

p2 = pl + fac*diff(1,3)

fac = fac* (ex-x(3))

p3 = p2 + fac*diff(1,4)

fac = fac* (ex-x(4))

p4 = p3 + fac*diff(1,5))

fac = fac* (ex-x(5))

p5 = p4 + fac* diff(1,6)

fac = fac* (ex-x(6))

p6 = p5 + fac*diff(1,7)
Notice that we must use a different variable name for the argument x from the name used for the
dataarray x(i).

Of course, it's more generd and flexible to use aDO loop.

fac=1.0

p = diff(1,1)

do400j=1,n

fac = fac* (ex-x()))
400 p=p +facrdiff(1,j+1)

e.  Issueswith high degree polynomids
If we have alarge number of data points, 20 or 100 or 1000s, it does not pay to use the entire
data table to create a 20 or 100 or 1000 degree polynomial. The grester the degree, the more

often the pn goes up and down between the data points. Our confidence that f (X) @p,, (X)

actudly decreases. It's better to interpolate on subsets of the data using aps or ap, usng data
points that surround the specified x. This process can be incorporated into the program.
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B. Least SquaresFitting

Often, there are errors or uncertainties in the data values, 10.07 + 0.005sec, for instance.
Perhaps forcing the approximating function to pass through the data points is not the wisest
approach.

An dternative gpproach isto assume afunctiona form for the unknown f(x) and adjust it to “ best
fit” the uncertain data. A way to judge what is“best” is needed.

1.  Goodnessof Fit
The method of least squares uses a particular measure of goodness of fit.

a.  Totd squared error, E
Firg of dl, never forget that the word error in this context means uncertainty. Now, let’'ssay
{x;,f;} arethen+1 datavauesand f(x) isthe assumed function. Then E isdefined to be

Bl 2
E=a—(fi- f(x)
i=1S
The{s; } areweighting factors that depend on the nature of the uncertainties in the deta {fi} .
For measured vaues, the s ; = Df;, the experimental uncertainties. Often, we just teke dl the

s; =1, perhgpsimplying that the experimenta uncertainties are dl the same.. In that case,
n+l

E=3 (fi- f(x)’.

i=1

b. Least squaresfit

We wish to derive an f(x) which minimizesE. That means taking the derivative of E with
respect to each adjustable parameter in f(x) and setting it equa to zero. We obtain a set of
amultaneous linear equations with the adjustable parameters as the unknowns. These are called
the normal equations.

2.  Least Squares Fit to a Polynomid

Assumethat f (x) = a+bx+cx? + dx®.
a.  Totd squared error

n+l
E=3 iz(fi - a- bx - cx? - dxf)2
i=1 S
We have four adjustable parameters: a, b, ¢, and d. Notice that, unlike the interpolating
polynomid, there may be any number of data pairs, regardiess of the number of parameters.

Let'stekedl thes; =1.

The partid derivative with respect to the adjustable parameters are
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. Al
——-Zé x,(fI a- bx - cx?- dxf)

-28 )(,2(f,-a bx. - cx? - dx,)

- a- bx - cx?- dx)

3

———Zéx,(f,-a b, - Cx; -dx-)

b.  Normd equations
Collect the like powers of x; and set the derivatives equa to zero.

é_ f :a+bé X; +cé xiz+dé_ X2
81, =afi x +b& 2 +C8 ' + o X'
é‘lefi :aél_ xi2+blé‘ xi3+cé xi4+dé x>
851, =08 X DA ¥ +8 X+ 08 X

In terms of the matrix eements we used in solving Smultaneous linear equations,

:éfi by, =1

=a xf, b= %
Cszéxizfi b21:éxi

=4 %1, by, =8 %, etc.

The system is solved by any standard method, Gauss-Jordan, Gauss-Seiddl, even by Cramer’s
method.

c.  Accuracy of fit

We d like to have some Satistical measure of how good the fit between the {fi} and f(x) is This
will depend on the relation between E and the { s iz}. Let'scongder aquantity caled (N =n+ 1)
4 (f(xo; fi)?

i=1 Si

Ifdl s; =1,then C* =E. Now, onanother hend,if s; »|f(x)- f;|,then C*» N- g,

where g isthe number of adjustable parameters and N — g isthe number of degrees of freedomin
2

C?=

the mathematical modd for thedata We'd liketo see » 1 for a“good” fit, while



<<1 indicatesthat the quadlity of the fit is ambiguous (sometimes cdled over fitted), and

N-g

>>1 indicates a“ poor” fit.

N-g
3. Least Squares Fit to Nonpolynomid Function

The process is Smilar when fitting to afunction that is not a polynomid. For instance, say that
f (x) =alnx+bcosx+ce*.
We wish to fit this function to the data shown at right. In this case,

N =10 and g = 3. The adjustable parameters are a, b and c. Xi f
10 2 24 0.23
E=C?=§ (fi - alnx - bcosx; - cexi) 65 -0.26
i=1 .95 -1.10
124 -0.45
Thenormd equations are; 1.73 0.27
ad (Inx)? +bQ Inx cosx +cq Inxe’ = f,Inx 2.01 0.10
0 o » o . o 2.23 -0.29
aq Inx cosx +bq (cosx )“+cq cosxe’ =q f; cosx; 550 0.24
ad Inxe’ +bq cosx e’ +cg (e9)2=§ f,e" 2.77 0.56
2.99 1.00
6.794a - 5.348b + 63.259¢c = 1.616
- 5.347a+5.108b- 49.009c = - 2.383
63.259a - 49.009b +1002.506¢ = 26.773
When solved by the Gauss-Jordan method, these yield
a=-1.041
b=-1261
c=0.031
f (x) =-1.041In x - 1.261cosx + 0.031e*
C2 0926
=<1
N-g 7
The goodness of fit between these data and
thisfunctionisambiguous. A glancea a Least Squares Fit
graph verifiesthat thefitis“iffy.” [That's :
the technical term for it]
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VI. Integration

b
We wish to evauate the following definite integrd: - f (x)dx.

a
We use numerical methods when

i) f(x) is known andyticaly but istoo complicated to integrate andyticaly or
ii) f(x) isknown only as atable of data.

A. NewtonCotes Formulae
1.  Trapezoid Rule
a  Graphs

Graphicdly, a definite integrd is the area between the x-axis and the curve f(x). Areas below the
axis are negative; areas above the axis are postive.

»
£

-J

-~
b.  Trapezoids

The area*under” the curve might be gpproximated most smply by a series of trgpezoids and
triangles.

£9
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o+ f
12 2(x2- %) 5 (X5 - xp) ++- e Wi i3
Notice thet x; = a and that xg = b. ]

c. Interpolating polynomid
In effect, we are replacing the integrand, f(x), by astraight line between each pair of points:

f(x)- f(m).
Xi - X.1

PL(X) = F(X.1) + (X~ Xi.1)
This can be checked by integrating p1(x) andyticaly.

Xi 21%
f- f, f- £, x fof
£+ (X- X IldX_f i i-1 - % i |-1X>ﬁ
Xlol i-1 ( i- 1) - %1 i- 1( - X 1) X; - )(i-l?{xi_l |-1Xi - X, %1
fox fo - f o x .f
=X fia- Xi-lfi-1+X|2| - X|2|1+X1§ -- = 12| - X f i fig
_ Xifi-1+xi fi Xafi Xafia
2 2 2 2

(% - )i + fiy) check.

N

d.  Implementation

N . .
For N data points spanning [a,b], there are N — 1 trapezoids. T = § (x - xi_l)%
i=2
If the data are uniformly spaced, then x; - x_; =h fordl i, and
Nol o
T——a §—+—+af.:
i i=2 @
The Fortran might look like this:
n=10
T=00
do 100i=1,n

100 T =T + (x(i)-x(i-1))* (f(i)+f(i-1))/2.0
2.  Extenson to Higher Order Formulae

a  Forward difference interpolating polynomia
We'll take this opportunity to examine an dternative interpolating polynomia—the Forward
Difference Polynomial.

Imagine we have atable of data pairs (x;,f;) which are uniformly spaced, with spacing h. The
forward differences are just the familiar deltas.
firgt order: Df(x)=f(x,)- f(x)="7,- f;

seoondorder: D7 (x,) = DF (%) - DF (%) = (F(xg) - f (%)) - (F(xp)- (%)
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Notice that the differences Df (x;) and D f (%) areregarded as being evaluated at X = X;.
Hence the term forward difference.

Notice, too, that the forward differences are related to the divided differences smply by
multiplying by the denominators.

Df (%) = hxf [x, ]
D? f (x;) = 2h? xf[Xg, X,, %]

D (%) = NA" XF [X0q, X0, o) Xp, ]

Now, let’s expand the integrand f(x) in a Taylor's Series about x = x1. Further, to increase the

dlement of confusion, let @ = —— +ah.

(9= 100) +aDf () + 2D P 1) + 280D ) .
Depending on how many terms are kept, thiswill give apolynomid in a orinx.

b. Smpson'srule

Any number of formulaemay be created by replacing the integrand, f(x), with an interpolating
polynomid of some specified degree. If f (x) » p,(X) = f(x,) +aDf (x;), the Trapezoid Ruleis
recovered.

Perhaps f(x) has some curvature, so a second degree interpolating polynomia may serve better.

Xa 2 i R
Of () » hooz(x1+ah)da hogf(xl)+an(x1)+""(""2 1)D2f(x1)§da

X 0
= 1€t (x ) + 2DF (x) + ZD? (x,)Y
82 (%) (%) 3 ( 1)H
Expand the differences. . .

X3

?f (x)dx » h§2f (X)) +2f (xy) - 2f(x) +% f(X3)- %f(xz) +% f (xl)g

h
= §[f(xl) +4f (x,) + f(X3)]
Thisis Smpson’s Rule, which integrates over segments of three data points (or two intervas of
h) in one step.

c. Implementation
X

E)f (x)dx ——[f (X)) +4F (%) + f (%3)]
X
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Of (dx :g[f (%) +41(xg) + f (%)]

X3

Xn+1

of (x)dx=g[f(xn_1) +4F (%) + F (X))

Xn-1
Add‘emup...
é u
b\ hé ng-l (_1.1 U
Of (o> za f(x)+4a f(x)- f(a)- Ty
a D_éz ID_'2=2 H

Caveats. i) the data points must be uniformly spaced.
ii) n + 1 must be odd, starting with 1 so that n = b-_ha iseven,
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B. Numericd Integration by Random Sampling
1.  Random Sampling

a  Pseudorandom numbers
Random numbers are a sequence of numbers, (21, 2,2, ) ,lyingintheintervd (0,1). Thereis

no pattern in the progression of the numbers, nor is any number in the sequence related to any
other number by a continuous function. There are datistica tests for randomnessin a sequence
of numbers but we won't bother with them here.

The operation of acomputer is determinigtic, so truly random numbers cannot be generated by a
computer program. However, sequences can be generated that appear to be random in that the
sequence passes some of the datigtical tests for randomness.  Such a sequence of numbersis
cdled pseudorandom.

Here is an dgorithm for generating a sequence of pseudorandom numbers:
x; =mod(axx_; +c,m)
1
m
where a, ¢c and m are integers and mod( ) is the modulus function. The pseudorandom number

uniformly digtributed in the interva (0,1) isz.

In Fortran, this looks like the following:

X =X0

doi=1,100

x1 = amod(a* x* c,em)

z=x1/em

x=x1

print *,z

end do
This process generates a sequence of numbers{z} that have some properties of random
numbers, but in fact the sequence repests itsdf—it’ s periodic. The exact sequence depends on
theinitid vaue, X,, caled the seed. Usudly, misalarge integer, commonly apower of 2. The
numbers ¢ and m can have no common factor (c can be zero) while a isamultiple of aprime
factor of m + 1. The period of the sequence is m, which iswhy m needsto belarge. For

instance, we might take m = 231, ¢ = 0 and a = 16807.

b. Intervas

Suppose we want our pseudorandom numbersto liein theinterva (ab) rather than (0,1). Thisis
eadily done by scaing, or mapping onto the desired interva. Say 0 £ z £1, then

y =(b- a)xz+a will lieintheinterval (ab).

C. Didributions

The example random number generator mentioned above produces numbers uniformly
distributed in (0,1). Thismeansthat is (0,1) were divided into equa subintervals, an equa
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number of random numbersis expected in each of those subintervas. The probability of the next
random number in the sequence faling in a particular subintervd isthe samefor dl the
subintervas spanning (0,1).

It is possible to form sequences of pseudorandom numbers which obey some other distribution
function, such as Poisson or Gaussian, etc. We won't get into that here.

2. Samplesof Random Sampling

a  Cointoss
We have two outcomes for each toss, of equa probability. WEe |l generate an integer, either 1 or
2, usng a pseudorandom number generator.

z = auniformly digtributed pseudorandom number in (0,1)
j=int(2*z)+1=1o0r2

Well say thatif j = 1, it sheads if j = 2it' stails

b. Roll of adie
In this case we have six outcomes, of equa probability (we hope). So we need to produce an
integer from 110 6.

j=int(6*z)+1=1,2,3,4,50r 6
Now, if it isknown that the die is|oaded, then we use a different scheme, creating subintervasin

(0,2) whose lengths reflect the relative probabilities of the faces of the die coming up. For
indance, we might say that

Z
0<z £02
02<z £0.34
0.34<z £056
0.56< z £0.72
0.72< z £0.89
0.89<z <1

o O | W N| R|—

3. Integration

Thinking again of the definite integra as an area under a curve, we envison arectangle whose
areais equa to thetota area under the curve f(x). The area of that equivaent rectangleisjust
the length of the integration interva (a,b) times the average vaue of the integrand over that
interval. How to take that average? Oneway isto sample the integrand a randomly selected
points.
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a.  Onedimensond ddfiniteintegras
1
Of (x)dx @—a f(x ), wherethe {x;} form apseudorandom sequence uniformly distributed in
0 i=1
° 14 -
(0,1). Over some other intervel, ¢yf (x)dx @(b- &) =3 f (%), where {x}1 (a,b).

a nizy

Since we are just averaging over alist of numbers, the error is O] — |, just like the deviation of

\/—

the mean.
1
exanple c§in xdx
0

1
c‘p‘n xdx = %[s'n 0.00075 +€in 0.01335 + sin 0.3904 = 0.1313
in xdx = —[sn 0.00075 + sin 0.01335+ sin 0.3904 + sin 0.8776| = 0.2910

in xdx = —[sn 0.00075+ 1n 0.01335+ 9n 0.3904 + 9n 0.8776 + 9n O. 0992] 0.2524

Oq,l—‘ OQ’H

The exact result is 0.460.

b.  Multi-dimensonintegrds
The random sampling approach is particularly ussful with 2- and 3-dimensond integras. The
other methods of numericd integration quickly become too messy to set up.

111
OOOf (%, Y, 2)dxdydz @_a f(X,¥,2%),
000 Nizg

where (X;,y;,z) is an ordered triple, each member uniformly distributed on (0,1).

We may use three separate sequences of pseudorandom numbers or Smply take numbers from
one sequence three a atime.

c.  Alternaeintegration regions

b, B by
) (‘)(‘)(‘)f(xiy’ 2)dxdydz @b, - a,)b, - a, )b, - a,) alf(& Y 2)

z %y
i) Suppose the integration region is not rectangular. Then an extra step is needed, to test for and
discard random points that fall outside the integration region.

eg., acirde—discard pointsfor which x? + y2 >1.
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/4-] X
i

Why do it thisway; to ensure that the points are uniformly digtributed in dl directions. If points
are taken uniformly digtributed in the radius, the points will be more widdy spread the further
out from the center they lie, not uniformly spread over the area of the circle,

example: compute the volume of a sphere of radius R In this situation, the integrand is 1.
R2pp
V = Odcsin?qdadj dr = ﬂpR3
000 3
Numericdly,

1 2R)°
VaR- (- R)R-(R)R-(R)E 1 =R - Mege,
n ia n n
X2+ + 22 ER?
Noticethis thetota number of random points generated isn. However, only m of thoselie

within the sphericd volume. The spherica volume we obtain is equd to m times the volume of
n

acubewhosesdeis2R It sinteresting to see what thisfractionis.

4 3
V. ZPR
sphere _ 3 3:B:a&%9m
chbe 8R 6

Theratio 2 should approach this constant as we generate more points and include them in the
n

ummeation.
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Another way to look a this 2 issueisto say that f(x) = 1 when X% +yZ2+z* £R? and O when
n

x% + yZ +z? > R?. Thenthereisno digtinction between n and m, and the summation isasum of
N —m zeros and m ones.

d.  Example
Evaduate C‘q‘};’n A/In( x + y+1dxdy , where W isthe region .
AN
i

2
e 1 A CD 1 J 21 g
| = gggn +/In( x+ y +1dxdy @EF +=- 6= - r== = f(x,y,) =4rc= f(x,Y)
%ﬁ @g 2 &2 g N .a='1 i n .a='12 v
g% %ga%/l EQEI’Z a'%ga?/l %9 r

[If youwant totry it, for r = 0.5, | = 0.57.]
Thisis equivaent to averaging the integrand over acircular area, thudy
n \dedy@)rzi é.m f (%, ¥i)
&- a’y -3 £r
Of course, often the shape of the region of integration in't asmple rectangle or circle.



e Fortran

redl* 8 x,a,em,sum,ex,why,ax,ay,bx,by,r,r2
f(xy) = sin(log(x+y+1))
n=100
r=0.5
r2=r*r
X = 256.
em=20**31
a=16807.
sum=0.0
ax=05-r
ay=05-r
bx=r+05
by=r+05
do500i=1,n
X = amod(a* x,em)
ex = x/em* (bx-ax) + ax
why = x/em* (by-ay) + ay
If( (ex-0.5)* (ex-0.5)+(why-0.5)* (why-0.5) .gt. r2 ) goto 500
sum = sum + f(ex,why)
500 continue
sum = sum* (by-ay)* (bx-ax)/n
print *, sum
stop
end
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VIl. Ordinary Differential Equations
A. Linear Firg Order Equations

ax
dt
solution: integration, separation of variables, infinite series, eic. In practice these may not be
convenient or even possible. In such cases we resort to a numerical solution. The x(t) takesthe
form of atable of data pairs{ti,xi}, raher than afunction.

We seek to solve the following equation for x(t): = f (x,t) . Thereare anaytica methods of

1.  One Step Methods

a  Taylor'sSeries
Many numerica solutions derive from the Taylor’'s series expansion
_+ 12 (42 - PP
0t = x(t.) + (t - 1) K 4 107 d¥x(te) | (- 1)" dPX(tg) | -
dt 2 dt? p! dtP

Wearegiven % = f (x,t), S0 we could subdtitute thisinto the series thudy:

(t' to)2 df (Xo1to) +et (t' to)p dp-lf(xo’to) T
{

X(0) = X(to) + (- t,) F(%,t0) +

dt p! dtP?
2 3
However, to obtain i % % , €tc., we have to usethechainrule
dt dt dt
df _fif | fif dx
dt  ft qxdt

RIS LIPS 5 SRS I (I A Y

a2 oM o e wl
It's easy to see that this gets very messy rather quickly.

b. Eule’'sMethod
Let’s keep just thefirst two terms of the Taylor'sseries: X(t) = X(t,) + (t - t) F (X, t5) + Ty

where the T, isthe sum of dl the terms we re dropping—cadl it the truncation error. In what
follows, we will have to distinguish between the correct or exact solution, x(t), and our

approximate solution, x;. We hope x; @x(t;) .

With the Euler Method, our agorithmis[given to, X(to) = X, and f(X,t)]
Xp = X+ (b - 1) fF(Xq,t5)
Xo = X+ (1 - ) F (X, 1)

Xisg =% + (G - ) FOX, 1)
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example %zl&,withto:Oandxoz4and (tis- ) =h=0.5.

Thedgorithmis X, = x + (t;,, - t)(13;).

Thefirg few stepsin the numerical solution are shown in the following table.

| t X

0 0 4

1 5 4

2 1 7.25
3 1.5 13.75
4 2 235

2. Error

a  Truncdion error

Xit1 = X +hf (X1 !ti)+Ti+l
Not only do we not know what the exact solution is, we don't know how far the numerica
solution deviates from the exact solution. 1n the case of atruncated Taylor’s series, we can
estimate the truncation error by evauating the first term that is dropped. For Euler’ sformula,
that' s the third term of the series.

h? df (%) _ h?
T.+ _ = f .
i+1 > 2 dt 2 (KX,)
Here' sagraph of both the exact (but unknown) and the numerica solutions.
N
X

b, b b2 5 tq K 4 £ <

The deviation from the exact x(t) may tend to increase as the tota truncation error accumulates
from step to sep, the further we get from the initid vaues (to,Xo). The lesson is—make h amdl.
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b.  Round-off error

Since the values are stored in finite precison, round-off error accumulates from step to step also.
Therefore, intraversng aninterva o £t £ b, we'd like to have as few steps as possible. In other
words, we want h to belarge. Consequently, the two sources of error put competing pressure on
our choice of step sze, h. If we have some knowledge of x(t), we may be able to achieve a

bal ance between large and smdll step sze. Otherwise, it’strid and error.

c.  Higher order methods

The many numerica dgorithms that have been developed over the years for solving differentid
equation seek to reduce the effect of truncation error by using more terms from the Taylor’'s
series, or in some way correcting for the truncation error at each step. In that way, fewer, larger
steps can be used.
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B.  Second Order Ordinary Differentid Equaions
d?x
dt2

= x@= f(t, x, %) = f(t,x,x9, withinitid conditions x(0) = x, and x§0) = v, .

1.  Reductionto aSystem of First Order Equations

a  New Vaiables
We gart by introducing new varidblenames: z, =t; z, = x; z, = x¢; z, = x@. Thefird three
variables are the solutions to the following differentid equations:
zt=1
2§ = x¢= z,
z$=x8=z,
These form a set of three amultaneous firg order differentid equations,
zt=1
2=z,
z$=2,=1(z2,7,2)
with theinitia conditions z,(0) = 0, z,(0) = x, and z,(0) = v, respectively.

b.  Solution
Any method, such as Euler’s, may now be gpplied to each first order equation in turn. Thudy:
Z;4 =2, tha
Z,in =2, thxz,

Z3,i+l = Z3,i + h xfi )
The Fortran code might look like this:

z(1)=0.0

z(2) = xo

z(3) =vo

h=0.01

do 100i=1,100

z(1) =z(1) +h

Z(2) = z(2) +h*z(3)

z(3) = z(3) + h*f(z(1),z(2),z(3))

write(5,1000) z(1),z(2),z(3)
1000 format(1x,3e15.5)
100 continue

c. Example
X®= - x¢ 9+ cog(w %)

X(0) =x,, x§0) = v,
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Inthiscase, f(t,x, X¢ =- x¢ 9+ cos(w %), so the dgorithm looks like
Z1,i+1 = Zl,i + h >§'

Z =z, + h Xz,

2,i+1

Zyia = 2, +ho- 2, - g+coswxz,)].
2.  Difference Equations

An dternative gpproach to second order ordinary differentid equationsis to replace the
derivatives with finite differences. The differentid equation is replaced by a difference equation.

a.  Difference equation
Using forward divided differences, we obtain

_OX X=X _dix _TaX, - X X - X 0 Xt 2X F X,
T h o e
Let's say that we have the second order differentia equetion
X€@=axC+bx+ct+d.
The corresponding difference equation is

Xis1 - Z)Zi T X :aga(ﬂl_ X 9+bX] +ct, +d.
h e h g
The next step isto solve for the “latest” X.

X, - 2% +X_, =ahx,, - ahx, +bh’x +ch’, +dh’

(- ah)x,, = (2- ah+bh?)x, - x_, +cht, +dh?

1
1- ah
Theinitid conditions are applied by setting to = 0, Xo = Xo and X, =X, - V,h.

X, = [(2 ah +bh2)>g - %, +ch’t, +dh2]

b. Examples
i) X¢=-g
Here, a=b=c=0andd=-g.
Xivg = 2Xi - Xt ghz

i) x@=-x¢ g
Thistime a=-1,b=0,c=0andd = -g.

1
X1 :m[(Z'Fh)Xi R th

c.  Discretization error

Replacing continuous derivatives with finite differences introduces whét is known as
discretization error. Implicitly, we are assuming a straight line between x; and x;+1 and between
x¢and x¢ aswell. Therewill dwaysbesome D = x,,, - X(t,,) & each step which will then

accumulate over the sequence of stepsin the numerica solution.
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