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I. Introduction 
 
A. Numerical Methods or Numerical Analysis 
 
1. Numerical Analysis 
 
a. Definition 
“Concerned with solving mathematical problems by the operations of arithmetic.”  That is, we 
manipulate ( ÷×−+ ,,/ , etc.) numerical values rather than derive or manipulate analytical 

mathematic expressions ( ∫ xxedx
dx
d bx ln,,,, , etc.). 

 
We will be dealing always with approximate values rather than exact formulæ.  
 
b. History 
Recall the definition of a derivative in Calculus: 

)(lim
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df
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∆
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where )()( 12 xfxff −=∆  and 12 xxx −=∆ .  We will work it backwards, using 
x
f

dx
df

∆
∆≅ . 

 
In fact, before Newton and Leibnitz invented Calculus, the numerical methods were the methods.  
Mathematical problems were solved numerically or geometrically, e.g., Kepler and Newton with 
their orbits and gravity.  Many of the numerical methods still used today were developed by 
Newton and his predecessors and contemporaries. 
 
They, or their “computers,” performed numerical calculations by hand.  That’s one reason it 
could take Kepler so many years to formulate his “Laws” of planetary orbits.  In the 19th and 
early 20th centuries adding machines were used, mechanical and electric.  In business, also, 
payroll and accounts were done by “hand.” 
 
Today, we use automatic machines to do the arithmetic, and the word computer no longer refers 
to a person, but to the machine.  The machines are cheaper and faster than people, however, they 
still have to be told what to do, and when to do it—computer programming.  
 
2. Newton’s Method for Solving a Nonlinear Equation—an example 
 
a. Numerical solution 
Let’s say we want to evaluate the cube root of 467.  That is, we want to find a value of x such 
that 4673 =x .  Put another way, we want to find a root of the following equation: 

0467)( 3 =−= xxf . 
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If f(x) were a straight line, then 
( )

0)()( 1 =
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0)( 1 ≠xf , but let’s say that 0)( 1 ≅xf  and 
solve for x1. 
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Having now obtained a new estimate for the 
root, we repeat the process to obtain a sequence 
of estimated roots which we hope converges on 
the exact or correct root. 
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etc. 
In our example, 467)( 3 −= xxf  and 23)( xxf =′ .  If we take our initial guess to be 6=ox , 
then by iterating the formula above, we generate the following table: 
 

i x )(xf  )(xf ′  
0 6 -251 108 
1 8.324 109.7718 207.8706 
2 7.796 6.8172 182.3316 
3 7.759 0.108 0.0350 

( )
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[Note:  The pocket calculator has a (yx) button, but a computer may do xxx ⋅⋅  to get x3.] 
 
b. Analytical solution 
How might we solve for the cube root of 467 analytically or symbolically?  Take logarithms.   

4673 =x  
467lnln3 =x  

467ln
3
1

ln =x  
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3
467ln

ex = = 7.758402264. . . 
 
We used the (ln) button on our pocket calculator, followed by the (ex) button.  In earlier times, 
we’d have used log tables.  But, whence cometh those tables and how does the calculator 
evaluate ln 467 or e2.0488? 
 
3. Series 

( ) ( ) ( ) L+−+−−−= 32 1
3
1

1
2
1

1ln xxxx  

L+−+−=
!7!5!3

sin
75

3 xxx
xx  

L+++++=
!4!3!2

1
432 xxx

xe x  

The infinite series are exact.  However, in practice we always keep a finite number of terms.  In 
principle, we can achieve arbitrary precision, if we have the necessary patience.  Pocket 
calculators and computer programs add up enough terms in a series to achieve a specified 
precision, say 8 or 16 significant digits. 
 
4. Error 
 
In this context, the term error does not refer to a mistake.  Rather, it refers to the idea of 
deviation or of uncertainty.  Every measured value is uncertain, according to the precision of the 
measuring instrument.  Every computed value is uncertain, according to the number of 
significant digits carried along or according to the number of terms retained in the summation of 
a series.  Consequently, all numerical solutions are approximate. 
 
Oftentimes, in discussing an example problem, the correct exact solution is known, so it is 
possible to determine how an approximate numerical solution deviates from that exact solution.  
Indeed, algorithms are often tested by applying them to problems having known exact solutions.  
However, in real life, we don’t know the correct exact solution.  We can’t know how far our 
approximate solutions deviate from the correct exact unknown solution.  In other words, we have 
to approximate the solution to a problem, but also we can only estimate the error. 
 
Fortunately, we have means of estimating error.  A goodly portion of the discussion in a 
Numerical Methods textbook is devoted to rigorous estimation of error.  In this course, we won’t 
concern ourselves with a detailed discussion of error analysis.  Nonetheless, we want to be 
always aware of the error issue, keeping in mind at least qualitatively the limitations of a 
numerical solution.  From time to time in the paragraphs that follow some aspects of the error 
involved with a particular algorithm will be briefly discussed. 
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B. Programming 
 
The computer carries out the tedious arithmetic, but it must be told what to do.  That is the 
function of a computer program.  A program may be written in one of any number of 
programming languages, however there are certain features or issues that all languages have in 
common. 
 
1. Program Design 
 
a. Stages 
 Conception—define the problem 
 Develop the algorithm—map out or outline the solution 
 Code—write the program 
 Debug & verify—trace the program; perform trial runs with known results; correct logical 
 & syntax errors 
 
b. Building blocks 
 Sequential operations—instructions done one after the other in a specified order 
 Branching operations—selecting alternative sequences of operations 
 Looping operations—repeating subsets of operations 
 I/O operations—reading and writing data 
 
2. Branching 
 
a. Simple yes or no—select between just 2 alternative actions 
 
b. Nested branches—a sequence of decisions or branches; decision tree 
 
c. Select case—more than two alternative actions 
 
3. Loops 
 
a. Counted loop—a section of code is executed a specified number of times 
 
b. Conditional loop—a section of code is iterated until a specified condition is met 
 
c. “Infinite’ loop—the condition for ending the loop never is encountered, so the program 
never ends 
 
4. I/O 
 
a. Input—keyboard or data file 
 
b. Output—monitor, output file, printer; numbers, text, graphics 
 



 7

5. Precision Issues 
 
a. Binary 
The computer does its arithmetic with binary numbers, that is, base-2.  E.g., 0, 1, 10, 11, 100, 
101, 110, 111, etc.  We are accustomed to working and thinking with base-10 numbers.  In 
producing the machine language code (the “executable”) and carrying out calculations, all 
numerical values are translated from base-10 to base-2 then back again for output.  Usually, we 
don’t need to care about this.  However, it can be a source of loss of precision in our numerical 
values because the machine stores values with only finite precision. 
 
b. Precision 
A single binary digit (0 or 1) is called a bit.  Eight bits make up a byte.  Within the machine, the 
unit of information that is transferred at one time to/from the CPU and main memory is called a 
word.  The size of a word, or the word length, varies from one machine to another.  Typically, 
it’ll be from 4 to 64 bits.  A 4-byte word contains 32 bits, etc. 
 
One memory cell or memory location holds one or more words.  Let’s say it’s one word, or 4 
bytes.  Whatever information (number) is stored in one such memory cell must be expressible as 
a string of 32 bits and no more.  For instance, a non-terminating binary fraction will be 
truncated, e.g., (0.1)10 = (0.00011001100110011. . .)2.  Only 32 digits will be stored in memory.  
When translated back into decimal, the number will be (0.09999997)10, not (0.1)10.  Similarly, 
the finite precision places a limit on the largest and the smallest numerical value that can be 
stored in a memory cell.   
 
In the back of our minds, we always remain aware of the physical limitations of the machine. 
 
6. Debugging 
 
When syntax errors are all eliminated, the program may very well run smoothly to completion.  
Perhaps it produces results which are clearly absurd; perhaps the results appear quite plausible.  
A programmer must always take steps to convince itself that the program is working correctly; 
the temptation to assume must be resisted.   
 
One of the most insidious assumptions is that the program is doing what the programmer 
intended it to do.  Perhaps, a typing error has produced a statement that has no syntax error, but 
does a different operation from that intended.  Perhaps the logical sequence of steps written by 
the programmer doesn’t accomplish the task intended by the programmer.  This why program 
tracing is so important, why it is essential to insert print statements all through the program to 
display the intermediate values of variables, why it is essential to check and double check such 
things as argument lists and dimensions and the values of indices—checking not what the 
programmer intended, but what the program actually does. 
 
The other, almost easier, aspect of debugging involves applying the program to a problem whose 
solution is already known.  It also involves repeating a numerical solution with different values 
of various parameters such as step size and convergence tolerance.  It involves comparing a 
numerical solution for consistency with previous experience. 
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II. Fortran 
 
A. Constants and Variables [Chapters 2 & 8] 
 
In Fortran, there are five types of data: integer, real, complex, character and logical. 
 
1. Constants 
 
Constants are values that do not change.   
 
a. Integers 
An integer is a +/- whole number, such as 8 or –379 or 739238.  The maximum number of digits 
allowed is machine specific, depending on the word length of the machine.  Integer constants are 
never displayed with a decimal point.  In contrast to some other programming languages, Fortran 
treats numbers with decimal points differently from numbers without decimal points. 
 
b. Real numbers 
Fortran uses the term real to refer to numbers that may have a fractional part such as 65.4 or 
0.00873, not to refer to a number whose imaginary part is zero.  A real number always has a 
decimal point.  Again, the largest and smallest allowed numerical value is machine dependent.  A 
real constant is stored in exponential or scientific format—as a real mantissa < 1 and an integer 
exponent:  0.7368x1014.  The constant may be displayed in either exponential or decimal form:  
37.67x10-3 or 0.03767. 
 
c. Complex constants 
In Fortran, the term complex refers to a number having both a real and an imaginary part.  A 
complex constant is stored in the form of two real constants, in two separate memory cells—one 
for the real part and one for the imaginary part, in keeping with the mathematical definition of a 
complex number as an ordered pair of numbers. 
 
d. Character constants 
Character constants are also known as character strings.  The character string is a sequence of 
alphanumeric characters enclosed in single quotes:  ‘Now is the time for all…’ or ‘3’ or ‘x = ‘.  
Notice that ‘3’ is a character constant while 3 is an integer constant. 
 
e. Logical constants 
There are two logical constants:  .TRUE. and .FALSE.  Notice the leading and ending periods.  
Logical constants and logical operators are enclosed by periods. 
 
2. Variables 
 
Numerical values are stored in memory cells.  Each memory cell is assigned a unique address so 
that the program may refer to each cell.  With constants, the contents of the memory cells do not 
change.  However, the contents of a cell associated with a variable may change as the program 
executes. 
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a. Variable names and memory cells 
In the Fortran program, each variable is given a name.  That name is associated uniquely with 
one memory cell (or two in the cases of complex and double precision variables).  The machine 
maintains a reference table containing every constant and variable name along with the memory 
address(es) assigned to each.   
 
b. Data types 
A variable is defined or declared to be of a particular data type, and stores numerical values of 
that type only.  The major data types in Fortran are integer, real, double precision, complex, 
character, and logical.  Double precision data has twice the number of digits as normal real or 
single precision data.  Therefore, a double precision value occupies two memory cells.  
Mismatched data will be translated into the data type of the variable it’s being stored in.  For 
instance, if we attempt to store the value 45.678 in an integer variable, the fractional part will be 
truncated, so the value becomes 45.  Likewise, an integer such as 567 becomes a real value 
(567.0) if stored in a real variable. 
 
c. Assignment statements 
The program instruction for storing a numerical value in a particular memory cell is called an 
assignment statement.  Commonly, such an instruction is represented symbolically as →386  jot.  
In English, this says “store the integer value 386 in the memory cell associated with the variable 
name jot.”   
 
In Fortran, the symbol for the assignment operation is the equal sign and the line in the program 
code would be jot = 386.  Keep in mind that is not the same meaning as the mathematical 
statement of equality.  jot = 386 does not mean “jot equals 386.”  The arithmetic assignment 
statements in a Fortran program resemble mathematical equations, but they are not equations.  
They are instructions for the machine to carry out certain arithmetical operations and store the 
result in a specified variable. 
 
d. Variable names 
There are restrictions on what string of characters may be used as a variable name. Originally, 
the variable name was restricted to no more than 6 characters.  Some implementations of Fortran 
allow longer variable names.  Only alphanumeric characters are allowed.  The first character of 
the name must be a letter.  Usually, no distinction is made between upper and lower case—
Fortran is case insensitive. 
 
Unless otherwise declared, variables beginning with the letters i through n are assumed to be of 
the integer data type, while names beginning with a – h & o – z are assumed to be real.  These 
assumptions are called implicit data typing.  The implicit data typing is overridden by any 
explicit data type declaration. 
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B. Statements 
 
A statement is a single instruction.  There are several types of statements in Fortran. 
 non-executable    executable 
  declaration     assignment 
  external     if 
  dimension     goto 
  common     stop 
  end      do 
  parameter     i/o statements 
  data      return 
  format     call 
 
1. Non-Executable 
 
Non-executable statements are not executed or performed when the program is running.  They 
are implemented during the compiling step, when the Fortran code is translated into the machine 
language.  Usually, non-executable statements (except for END) are located at the top of the 
program code, or program list.  Some statements must appear at the beginning of the list, others 
may appear at any place in the program. 
 
a.  Declaration 
Declaration statements specify the data types of the variables. 
 
b. Parameter 
The PARAMETER statement in effect defines a variable name to be a constant. 
 
c. Dimension and Common 
These statements define what are called subscripted variables, which are like matrices. 
 
d. Data 
The DATA statement is used to give initial values to variables. 
 
e. End 
The END statement signals the end of a program block or module. 
 
f. External 
The EXTERNAL statement identifies a subprogram or module that is defined outside of the 
main program. 
 
g. Format 
The FORMAT statement specifies how output is to be displayed. 
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2. Executable 
 
Executable statements are instructions that are carried out when the program is running. 
 
a. Assignment 
An assignment statement causes the value on the right side of the equal sign to be stored in the 
location identified with the variable name on the left side of the equal sign.  The left side must 
always be a single variable name.  The right side may be an expression or a constant or a single 
variable name. For instance, 
 ex = 47.0*sin(theta) why = sqrt(why) + 7.0  zed = 0.9805  que = zed 
 
b. GoTo 
A GOTO statement transfers control to a specified program statement.  The GOTO may be 
conditional or unconditional.  The statement may appear as two words (go to) or as one word 
(goto). 
 
c. Do 
The DO statement signals the beginning of a do-loop, which is a program block that is executed 
multiple times in a row. 
 
d. Read, Print, Write 
These statements are used to put data into or out of the program. 
 
e. Stop 
The STOP statement terminates execution of the program.  A STOP statement may appear 
anywhere in the program and there may be more than one STOP statement. 
 
f. Return 
The RETURN statement appears in a subprogram or module and has the function of returning 
control to the calling program or module. 
 
g. Call 
The CALL statement transfers control to the particular kind of subprogram called a subroutine. 
 
3. Keyboarding 
 
Historically, Fortran statements were punched on computer cards (Holerinth cards), one 
statement per card.  The physical limitations of those cards is still reflected in the restrictions 
placed on the keyboarding of Fortran statements: 
 i) the statement must lie entirely in columns 7 thru 72; 
 ii) column 6 is reserved for a character designating continuation of a statement; 
 iii) a c or C placed in column 1 designates a comment line; 
 iv) statement labels are placed in columns 1 through 5; 
 v) blank spaces within a statement are ignored. 
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C. Input and Output [Chapter 3] 
 
Two kinds of input & output are defined:  list directed and formatted. 
 
1. List directed 
 
a. Reading—free format 
 READ *, var1,var2,var3,… 
The values are read from the keyboard—just keyboard the numbers delimited by commas or 
spaces and end with the ENTER (or RETURN) key.  The numbers needn’t be entered all on one 
line; however, each READ statement starts reading from a new line.  The numbers can be 
entered in integer, decimal or exponential form.  Character data or logical data can also be 
entered, if the corresponding variable has been so declared.   
 
b. Printing—free format 
 PRINT, *,var1,var2,var3,… 
Values are printed to the monitor, preformatted.  The print list may also contain constants.  Each 
PRINT statement begins a new line or a new record.  If the record exceeds the width of the 
monitor screen, the record is continued on the next line. 
 
2. Formatted I/O 
 
With formatted I/O, we specify how the output is to appear:  the spacing, number of digits 
displayed, etc. 
 
a. Syntax of a FORMAT statement 
 sl format(ccc,specifier1,specifier2,…) 
The sl is the statement label that identifies the format statement.  The ccc stands for the carriage 
control character.  The specifier (also known as an edit descriptor) is a code that specifies how a 
value is to be printed.  There must be one specifier for every variable or constant in the print list. 
 
b. Formatted output—using the edit descriptors 
  PRINT sl, var1,var2,var3,… 
  sl FORMAT(1x,spec1,spec2,spec3,…) 
The specifier or descriptor must match the data type of the variable in the order that the variables 
are listed, otherwise gibberish will be printed out. 
 
If the field width (w) is not large enough, then a string of asterisks (*) are printed.  It’s advisable 
to use E-format for all real variables when the program is being developed. 
 
If the list of specifiers is shorter than the print list then the computer starts over at the beginning 
of the format list.   
 
A FORMAT statement may be placed anywhere in the program module.  Any number of output 
(PRINT or WRITE) statements may use the same FORMAT statement. 
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Formatted input can be used also, but why bother? 
 
c. Edit descriptors 
Each printed value is said to occupy a certain field, that is, a certain number of columns.  In the 
following table, w = the width of the field and d = the number of digits to display. 

edit descriptor description 
Iw integer value 

Fw.d real value in decimal form 
Ew.d real value in exponential form 
Dw.d double precision value in exponential form 
Gw.d real value in “general purpose” form 
Aw character value 
rx an r number of blank spaces 
Tc tab to column c 

TRs tab right by as s number of spaces 
TLs tab left by an s number of spaces 

/ start a new line or record 
r(  ) repeat (  ) r times 

‘ text ‘ character strings 
 
3. File I/O [Chapter 9] 
 
a. Opening and Closing units 
 OPEN(n,file=’filename’)  and CLOSE(n) 
In this context, the word unit refers to I/O unit or device.  An I/O device might be the monitor, 
the keyboard, a disk file, a punched card reader, a punched card puncher, a teletypewriter, a line 
printer, a computer port, and so on.  Most commonly, it’ll be the monitor, keyboard or a disk file.  
Each device has to be given a unit number (n) and a name (filename).  That is the purpose of the 
OPEN statement. 
 
b. Reading 
Each READ statement starts with the next new record or line.  There is free format reading 
 READ(n,*) var1,var2,var3,... 
and formatted reading 
 READ(n,sl) var1,var2,var3,… 
We don’t usually bother with formatted input.  However, some commercially produced programs 
require formatted input. 
 
c. Writing 
Each WRITE statement starts a new record.  Again, there is free format writing 
 WRITE(n,*) var1,var2,var3,… 
and formatted writing 
 WRITE(n,sl) var1,var2,var3,… 
  sl FROMAT(1x,………) 
In contrast to reading, we normally do use formatted writing so that output is displayed in an 
attractive and legible form. 
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d. Data file issues 
 i) sequential vs. direct access 
Most often input files are read line by line from the top to the bottom.  This is referred to as 
sequential access.  The program cannot go back and forth within the data file.  In a direct access 
file, specified records are accessed in any order, usually identified by a record number.  Direct 
access is also known as random access. 
 ii) open statement parameters 
There are some additional parameters that may be used in an OPEN statement.   
  ERR=sl  transfers control to statement sl if an I/O error occurs 
  IOSTAT=integer variable name  stores the value of the error code IOSTAT 
  ACCESS  ‘sequential’ or ‘random access’ 
 iii) read statement parameters 
There are some additional parameters that may be used in a READ statement. 
  ERR=sl1  transfers control to statement sl1 is a read error occurs. 
  END=sl2  transfers control if the end of the data file is encountered. 
The END parameter is particularly useful when reading a data file whose length is unknown.  If 
the END parameter is not present, the program will stop if an end of file is encountered. 
 iv) data files 
Data files are plain text files.  So, for instance, if you use a word processor to create an input file, 
be sure to save it as plain text.  Likewise, output files can be subsequently edited with a plain text 
editor, such as NotePad.  Of course, plain text editors prefer to attach the .txt extension.  A data 
file can have any 3-letter extension you please.  A Fortran source file, which is also a plain text 
file, must have the .for extension. 
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D. Functions and Subprograms [pages 55 –57 & Chapter 7] 
In Fortran, program modules are called functions and subprograms.  There are several types of 
program modules. 
 
1. Functions 
 
a. Intrinsic functions 
A mathematical function, such as ex, is evaluated by summing a series.  One could write ones 
own subprogram to add up the series expansions of ex, sin(x), ln(x) or x , etc.  However, some 
common functions are already done in Fortran.  Those are the intrinsic or built-in functions such 
as SQRT(x), EXP(x), SIN(x) and so on. 
 
b. Statement function 
A statement function is a one-line subprogram defined by the programmer.  It’s a non-executable 
statement, so it must appear at the top of the program module, before the first executable 
statement and following the DIMENSION, COMMON, DATA, and DECLARATION 
statements.  A statement function must have at least one dummy argument. It may have several. 
 FUNC(X) = 37.0*X + TAN(X) 
Later in the program, the function is invoked just like an intrinsic function, thusly Z = FUNC(B).  
The function may have any name not being used as a variable name.  If a statement function is 
given the same name as an intrinsic function, it will supercede the intrinsic function.   
 
c. Function subprogram 
A function subprogram is a multiline user-defined function.  The function subprogram is self-
contained in that it must have its own type declaration statements, its own dimensioning 
statements, its own data statements, and so on.  Rather than a STOP statement, the function 
subprogram must have at least one RETURN statement, which has the effect of returning control 
to the program module calling the function.  There may be STOP statements in a function 
subprogram.  The function subprogram returns to the calling module a single value that is stored 
in a variable name of the appropriate data type.  The name of that variable must be the same as 
the name of the function.  The function subprogram must have at least one dummy argument.  
However, that dummy argument need not actually be used to pass data to the function.  In the 
calling module, the function subprogram is invoked in the same manner as an intrinsic function. 
 
d. Subroutine 
The subroutine is really a complete independent program.  It may have STOP statements, but 
like the function subprogram it must have at least one RETURN statement.  A subroutine may 
return to the calling module any number of values, not just a single one.  It may return no values 
at all, but simply carry out some task such as printing output.  Information may be conveyed to 
the subroutine through an argument list and/or through COMMON statements.  The subroutine 
may have no arguments at all.  A subroutine is invoked by the CALL statement. 
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Fortran sidelight #0  
 
Statement labels and GoTo statements and DO statements [page 70s; 101 – 103; Chapter 5] 
 
There are no line numbers in Fortran.  Any program statement may be given a statement label or 
a statement number.  The statement label is used to refer to a program statement within the 
program.  Statement labels must be unique and must appear in the first 5 columns of the line.  
However, they need not be in any particular order.  
 
A GoTo statement is an unconditional transfer of control as in GoTo 304, which means that the 
statement labeled 304 will be executed next, no matter what.  The GoTo statement must include 
a statement label, pointing to an executable line which appears in the program. 
 
A DO statement begins a Do Loop.  There are two forms of Do Loop.  One makes use of a 
statement label to define the end of the code to be iterated, the other form uses the End Do 
statement for the same purpose.  For example 
 
  Do 400 i = 1,10    Do i = 1,10 
  .      . 
  .      . 
  .      . 
 400    Continue     EndDo 
 
It is permitted to transfer out of a Do Loop, but not into one.  Do Loops can be nested. 
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III. Numerical Solution of Nonlinear Equations 
 
A. Non-Linear Equations—one at a time 
 
There are closed form solutions for quadratic and even 3rd degree polynomial equations.  Higher 
degree polynomials can sometimes be factored.  However, in general there is no closed form 
analytical solution to non-linear equations. 
 
1. The Problem 
 
a. Roots & zeroes 
We seek to find x such that 0)( =xf  or 
perhaps such that )()( xgxf = .  In the 
latter case, we merely set 

0)()()( =−= xgxfxh .  We are looking 
for a root of the equation 0)( =xf  or a 
zero of the function f(x).   
 
b. Graphical solution 
Plot f(x) vs. x—observe where the graph 
crosses the x-axis or plot f(x) and g(x) vs. 
x and observe where the two curves intersect.  A graph won’t give a precise root, but we can use 
the graph to choose an initial estimate of the root. 
 
2. Bisection 
 
a. Setup 
 
For brevity, say fo = f(xo) and f1 = f(x1), etc.  
Say further that α=x  is the desired root.  
The graph shows us that 01 <⋅ ffo  because 
f(x) crosses the x-axis between [xo,x1]. 
 
b. Algorithm 
Let us find the midpoint of [xo,x1], and call it 
b. 

 i) 
2

1xx
b o +

=  and then )(bffb =  

 ii) Does 0≅bf ?  If so, quit ‘cause b≅α . 
 iii) If not, then 
  if 0<⋅ bo ff , then set bxo =  and bo ff =  
  or 
  if 01 <⋅ ffb , then set instead bx =1  and bff =1 . 
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 iv) Is ε≤− oxx1 ?  If so, quit and set 
2

1xxo +
=α . 

 v) If not, then repeat beginning with step (i).  
 
It is well also to count the iterations and to place a limit on the number of iterations that will be 
performed.  Otherwise, the program could be trapped in an infinite loop.  Also, it is well to test 
for the cases 0>⋅ bo ff  and 01 >⋅ bff .  It may be that the function does not cross the x-axis 
between fo and f1, or crosses more than once. 
 
3. Newton’s Method or the Newton-Raphson Method 
 
a. Taylor’s series 
Any well-behaved function can be expanded in a Taylor’s series: 

L+
′′′

−+
′′

−+′−+=
!3

)(
)(

!2
)(

)()()()()( 32 o
o

o
oooo

xf
xx

xf
xxxfxxxfxf . 

Let’s say that x is “close” to xo and keep just the first two terms. 
)()()()( ooo xfxxxfxf ′−+≈  

We want to solve for x such that f(x) = 0.   
0)()()( =′−+ ooo xfxxxf  

)(
)(

o

o
o xf

xf
xx

′
−=  

In effect we have approximated f(x) by a straight line;  x is the intercept of that line with the x-
axis.  It may or may not be a good approximation for the root α . 
 
b. Algorithm 
 i) choose an initial estimate, xi 
 ii) compute f(xi) and )( ixf ′  

 iii) compute the new estimate:  
)(
)(

1
i

i
ii xf

xf
xx

′
−=+  

 iv) return to step (ii) with i = i + 1 
 
c. Comments 
It turns out that if the initial estimate of the root is a good one, then the method is guaranteed to 
converge, and rapidly.  Even if the estimate is not so good, the method will converge to a root—
maybe not the one we anticipated. 
 
Also, if there is a 0=′f  point nearby the method can have trouble.  It’s always a good thing to 
graph f(x) first. 
 
4. Secant Method 
 
a. Finite differences 
A finite difference is merely the difference between two numerical values. 
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12 xxx −=∆  or ii xxx −=∆ +1  
Derivatives are approximated by divided differences. 

x
f

xx
xfxf

xf
ii

ii

∆
∆=

−
−

≅′
+

+

1

1 )()(
)(  

We may regard this divided difference as an estimate of f ′  at xi or at xi+1 or at the midpoint 
between xi and xi+1. 
 
b. The Secant method 
We simply replace f ′  by the divided difference in the Newton-Raphson formula: 

)()(
)(

1

1
1

−

−
+ −

−
−=

ii

ii
iii xfxf

xx
xfxx . 

Notice the indices: i + 1, i, i – 1.  With the Secant Method, we don’t use a functional form for 
f ′ .  We do have to carry along two values of f, however. 

 
Care must be taken that )()( 1−− ii xfxf  not be too small, which would cause an overflow error 

by the computer.  This may occur if )()( 1−≈ ii xfxf  due to the finite precision of the machine.  

This may also give a misleading result for the convergence test of )()( 1−− ii xfxf .  To avoid 
that, we might use the relative deviation to test for convergence. 

ε≤
− −

)(

)()( 1

i

ii

xf

xfxf
 

 
c. Compare and contrast 
Both the Newton-Raphson and Secant Methods locate just one root at a time. 
 
Newton:  requires evaluation of f and of f ′  at each step; converges rapidly. 
 
Secant:  requires evaluation only of f at each step; converges less rapidly. 
 
5. Hybrid Methods 
 
A hybrid method combines the use in one program of two or more specific methods.  For 
instance, we might use bisection to locate a root roughly, then use the Secant Method to compute 
the root more precisely.  For instance, we might use bisection to locate multiple roots of an 
equation, then use Newton-Raphson to refine each one. 
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B. Systems of Nonlinear Equations 
 
Consider a system of n nonlinear equations with n unknowns. 

0),,,,( 3211 =nxxxxf …  

0),,,,( 3212 =nxxxxf …  

M  
0),,,,( 321 =nn xxxxf …  

 
1. Newton-Raphson 
 
a. Matrix notation 
Let’s write the system of equations as a matrix equation. 

02

1

=



















=

nf

f

f

f M  

The unknowns form a column matrix also.  



















=

nx

x

x

x M
2

1

.  We might write the system of equations 

compactly as 0)( =xf . 
 
b. The Method 
The Newton-Raphson method for simultaneous equations involves evaluating the derivative 

matrix, F , whose elements are defined to be 
j

i
ij x

f
F

∂
∂= .  If the inverse 1−F  exists, then we can 

generate a sequence of approximations for the roots of functions {fi}. 
)()(1

1 kkkk xfxFxx ⋅−= −
+  

At each step, all the partial derivatives must be evaluated and the F  matrix inverted.  The 
iteration continues until all the 0≅if .  If the inverse matrix does not exist, then the method 
fails.  If the number of equations, n, is more than a handful, the method becomes very 
cumbersome and time consuming. 
 
2. Implicit Iterative Methods 
 
The Newton-Raphson method is an iterative method in the sense that it generates a sequence of 
successive approximations by repeating, or iterating, the same formula.  However, the term 
iterative method as commonly used refers to a particular class of algorithms which might more 
descriptively be called implicit iterative methods.  Such algorithms occur in many numerical 
contexts as we’ll see in subsequent sections of this course.  At this point, we apply the approach 
to the system of simultaneous nonlinear equations. 
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a. General form 

Let 



















=

nα

α
α

α M
2

1

 be the solution matrix to the equation 0)( =xf .  I.e., 0)( =αf .  Now, solve 

algebraically each 0)( =xf i  for xi.  This creates a new set of equations, )(xFx ii ′= , where x ′  
refers to the set of unknowns {xj} excluding xi.  Algebraically, this looks funny, because each 
unknown is expressed in terms of all the other unknowns, hence the term implicit.  Of course, 
what we really mean is 

)(1 kk xFx =+ . 
Alternatively, in terms of matrix elements, the equations take the form 

),,( ,,2,11, knkkiki xxxFx …=+ . 
 
b. Algorithm 
In a program, the iterative method is implemented thusly: 
 i) choose an initial guess, ox  

 ii) compute )(1 oxFx =  

 iii) test 0)( 1 ≅xf  
 iv) if yes, set 1x=α  and exit 

 v) if no, compute )( 12 xFx = , etc. 
 
c. Convergence 
We hope that α=

∞→
k

k
xlim .  For what conditions will this be true?  Consider a region R in the 

space of {xi} such that hx jj ≤−α  for nj ≤≤1  and suppose that for x  in R there is a positive 

number µ  such that µ≤
∂

∂∑
=

n

j j

i

x

xF

1

)(
.  Then, it “can be shown” that if ox  lies in R, the iterative 

method will converge.  What does this mean, practically?  It means that if the initial guess, ox , is 
“close enough” to α , then the method will converge to α  after some number, k, of iterations.  
Big deal. 
 
 



 22

Fortran Sidelight #1 
 
IF statements [Chapter 4] 
 
There are two varieties of IF statements.  The one liner, and the IF-THEN-ELSE block.  In both 
cases, a decision on what action to take next is made on the basis of some logical relation. 
 
A logical relation is a statement which may be true or false.  Logical or relational operators [.OR.  
.AND.  .LE.  .LT.  .GE.  .GT.  .NE.  .EQ.] are used to form logical relations.  For instance, the 
statement  sqrt(x).eq.3 is a logical relation.  If the square root of x is 3, then the relation has the 
logical value .TRUE.  If x = 16, though, then the relation has the logical value .FALSE. 
 
One-liners 
 
IF( logical relation ) action statement 
 
If the logical relation in the parentheses is .TRUE. then the action statement is executed.  If the 
logical relation is .FALSE. the action statement is not executed.  In either case, execution 
continues with the line following the IF statement, unless the action statement, when executed, 
redirects program control to another statement.  In fact, such redirection of control is a common 
use of a one liner IF.  The action statement may be any Fortran executable statement such as 
assignment, I/O, or GoTo but not a DO statement or another IF statement. 
 
IF-THEN-ELSE block 
 
The one liner is limited to a single action statement when the logical relation is .TRUE.  The IF-
THEN-ELSE construction allows more flexibility is setting up alternative blocks of program 
statements. 
 
 IF( logical relation ) THEN 
  { block A } 
 ELSE 
  { block B } 
 END IF 
 
In this case, if the logical relation is .TRUE., then the program code Block A is executed.  If the 
logical relation is .FALSE., then the code Block B is executed.  Each code block may be a single 
executable statements or many executable statements.  Once Block A or B is executed, the 
program continues with the statement following the END IF statement. 
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Additional logical branches may be nested within the IF-THEN-ELSE.  Thus: 
 
 IF( logical relation 1 ) THEN 
  { block A } 
 ELSE IF( logical relation 2 ) THEN 
  { block B } 
 ELSE IF( logical relation 3 } THEN 
  { block C } 
 ELSE 
  { block D } 
 END IF 
 
Obviously, it’s easy to become tangled up in these nested ELSEs. 
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IV. Linear Algebra 
 
A. Matrix Arithmetic 
 
The use of matrix notation to represent a system of simultaneous equations was introduced in 
section III-B-1 above, mainly for the sake of brevity.  In solving simultaneous linear equations, 
matrix operations are central.  There follows, therefore, a brief review of the salient properties of 
matrices.  Fuller discussion of the properties of matrices may be found in various texts, 
particularly Linear Algebra texts. 
 
1. Matrices 
 
A matrix is an n x m array of numbers.  In these notes a matrix is symbolized by a letter with a 
line on top, B ; n is the number of rows and m is the number of columns.  If n = m, the matrix is 
said to be a square matrix.  If the matrix has only one column(row) it is said to be a column(row) 
matrix.  The jth element in the ith row of a matrix is indicated by subscripts, bij.  Mathematically, 
an entity like a matrix is defined by a list of properties and operations, for instance the rules for 
adding or multiplying two matrices.  Also, matrices can be regarded as one way to represent 
members of a group in Group Theory.   
















=

34

24

14

33

23

13

32

22

12

31

21

11

b

b

b

b

b

b

b

b

b

b

b

b

B   









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
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2

1

x

x

x

x  

 
2. Addition & Subtraction 
 
a. Definition 
The addition is carried out by adding the respective matrix elements.   

BAC +=  

ijijij bac +=  
 
b. Rules 
The sum of two matrices is also a matrix.  Only matrices having the same number of rows and 
the same number of columns may be added.  Matrix addition is commutative and associative. 

ABBA +=+   )()( CBACBA ++=++  
 
3. Multiplication 
 
a. Definition 

BAC =  
L+++== ∑ jijiji

k
kjikij babababac 332211  

b. Rules 
The product of two matrices is also a matrix.  The number of elements in a row of A  must equal 
the number of elements in a column of B .  Matrix multiplication is not commutative. 
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ABBA ≠  
A matrix may be multiplied by a constant, thusly:  ijij aqc ⋅= .  The result is also a matrix. 
 
4. Inverse Matrix 
 
a. Unit matrix 
The unit matrix is a square matrix with the diagonal elements equal to one and the off-diagonal 
elements all equal to zero.  Here’s a 3x3 unit matrix: 
 
















=

100

010

001

U  

b. Inverse 
The inverse of a matrix, B , (denoted 1−B ) is a matrix such that UBBBB == −− 11 .  The 
inverse of a particular matrix may not exist, in which case the matrix is said to be singular. 
 
The solution of a system of simultaneous equations in effect is a problem of evaluating the 
inverse of a square matrix. 
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Fortran Sidelight #2 
 
Dimensions, Arrays, and Matrices [Chapter 6; pages 223 – 224] 
 
In Fortran, a matrix is called a dimensioned variable, or an array, or a subscripted variable.  The 
DIMENSION statement specifies the size of an array and the number of indices or subscripts. 
 
Consider a two dimensional matrix, B .  An element of that matrix might be written as bij.  In the 
Fortran code this becomes b(i,j).  An element of a one-dimensional matrix x  (either a row or 
column matrix) is represented by x(i).   
 
For instance, the following DIMENSION statement sets up one square matrix and two column 
matrices: 
 

DIMENSION b(20,20), x(20), c(13) 
 
Notice that the array names are delimited by commas.  The numbers in the parentheses are upper 
limits on the ranges of the indices.  Therefore, both the indices of the variable b range from 1 to 
20.  The index of variable c ranges from 1 to 13.  Later versions of Fortran allow array indices to 
be negative or zero:  DIMENSION b(0:19,0:19), x(-3,16).  Referring to an index value outside 
the range specified in the DIMENSION statement can lead to “unpredictable results.” 
 
The DIMENSION statement appears at the top of a program module, preceding any executable 
statements.  There may be more than one DIMENSION statement.  The array names may be 
listed in any order.  Dimensioning is not global, so any program module that uses array variables 
must have its own DIMENSION statement(s). 
 
In Fortran, the addition or multiplication of matrices must be spelled out with DO loops.  In other 
words, there are no array operations. 
 

Multiply a column matrix by a square matrix 
 DO 200 i=1,20 
 c(i) = 0.0 
 DO 100 j=1,20 
  100 c(i) = c(i) + b(i,j)*x(j) 
  200 CONTINUE 
 

Multiply two square n x n matrices 
 DO 300 i=1,n 
 DO 300 j=1,n 
 d(i,j) = 0.0 
 DO 200 k=1,n 
  200 d(i,j) = d(i,j) + a(i,k)*b(k,j) 
  300 CONTINUE 
 

Multiply a column matrix by a constant 
 DO 100 j=1,n 
  100 d(j) = que*d(j) 
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B. Simultaneous Linear Equations 
 
1. The Problem 
 
a. Simultaneous equations 
We wish to solve a system of n linear equations in n unknowns. 
 

11212111 cxbxbxb nn =++ L  

22222121 cxbxbxb nn =++ L  

M  

nnnnnn cxbxbxb =++ L2211  
where the {bij} and the {ci} are constants. 
 
b. Matrix notation 
The system of equations can be written as a matrix multiplication. 
 

cxB = , where 
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  and 


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When n is small ( 40≤n , say) a direct or one-step method is used.  For larger systems, iterative 
methods are preferred. 
 
2. Gaussian Elimination 
 
In a one-step approach, we seek to evaluate the inverse of the B  matrix. 

cxB =  
cBxxBB 11 −− ==  

The solution is obtained by carrying out the matrix multiplication cB 1− . 
 
a. Elimination 
You may have seen this in high school algebra.  For brevity’s sake, let’s let n = 3. 

1313212111 cxbxbxb =++  

2323222121 cxbxbxb =++  

3333232131 cxbxbxb =++  
In essence, we wish to eliminate unknowns from the equations by a sequence of algebraic steps. 
 

normalization   i) multiply eqn. 1 by 
11

21

b
b

−  and add to eqn. 2; replace eqn. 2. 

reduction    ii) multiply eqn 1 by 
11

31

b
b

−  and add to eqn. 3; replace eqn. 3. 
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1313212111 cxbxbxb =++  

2323222 cxbxb ′=′+′  

3333232 cxbxb ′=′+′  
 

iii) multiply eqn. 2 by 
22

32

b
b

′
′

−  and add to eqn. 3; replace eqn. 3. 

1313212111 cxbxbxb =++  

2323222 cxbxb ′=′+′  

3333 cxb ′′=′′  
We have eliminated x1 and x2 from eqn.3 and x1 from eqn. 2. 
 
back substitution iv) solve eqn. 3 for x3, substitute in eqn. 2 & 1. 
        solve eqn. 2 for x2, substitute in eqn. 1. 
        solve eqn. 1 for x1. 
 
b.  Pivoting 
Due to the finite number of digits carried along by the machine, we have to worry about the 
relative magnitudes of the matrix elements, especially the diagonal elements.  In other words, the 
inverse matrix, 1−B  may be effectively singular even if not actually so.  To minimize this 
possibility, we commonly rearrange the set of equations to place the largest coefficients on the 
diagonal, to the extent possible.  This process is called pivoting. 
e.g. 

37x2 – 3x3 = 4 
19x1 – 2x2 + 48x3 = 99 
7x1 + 0.6x2 +15x3 = -9 

rearrange 
19x1 – 2x2 + 48x3 = 99 

37x2 – 3x3 = 4 
7x1 + 0.6x2 +15x3 = -9 

or 
7x1 + 0.6x2 +15x3 = -9 

37x2 – 3x3 = 4 
19x1 – 2x2 + 48x3 = 99 

 
3. Matrix Operations 
 
In preparation for writing a computer program, we’ll cast the elimination and back substitution in 
the form of matrix multiplications. 
 
a. Augmented matrix 
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b. Elementary matrices 
Each single step is represented by a single matrix multiplication. 
 
The elimination steps: 
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The first back substitution step: 
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This completes one cycle.  Next we eliminate one unknown from the second row using 
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This completes the second cycle.  The final cycle is 
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We identify the inverse matrix 123142563

1 SSSQSQSSQB =− .  Notice that the order of the matrix 
multiplications is significant.  Naturally, we want to automate this process, and generalize to n 
equations. 
 
4. Gauss-Jordan Elimination 
 
a. Inverse matrix 
We might multiply all the elementary matrices together before multiplying by the augmented 
matrix.  That is, carry out the evaluation of 1−B , then perform AB 1− . 
 
b. Algorithm 
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n = number of equations 
k = index of the step or cycle 
aij = elements of the original augmented matrix, A . 
 
 
For each value of k, do the i = k line first. 
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c. Example 
n = 3 and n + 1 = 4 
 

1624 321 =++ xxx  

103 321 =++ xxx  

1252 321 =++ xxx  
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
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e.g., for k = 1, i = 1, j = 1 & j = 4 
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C. Iterative Methods 
 
For n > about 40, the one-step methods take too long and accumulate too much round-off error.   
 
1. Jacobi Method 
 
a. Recursion formula 
Each equation is solved for one of the unknowns. 
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, i = 1, 2, 3, . . .,n. 

Of course, we cannot have bii = 0 for any i.  So before starting the iterative program, we may 
have to reorder the equations.  Further, it can be shown that if ijii bb ≥  for each i, then the 
method will converge, though it may be slowly.  Here’s an outline of the “showing.” 
 

The first iteration is: VxAx +−= 01  

After several iterations, VAxAVAAAxAAAAVxAx kk
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b. Algorithm 

We need four arrays: kx , 1+kx , B , and c .   

Firstly, select an initial guess (k = 0) 
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Secondly, compute a new x  (k + 1 = 1). 
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Thirdly, test for convergence.  ε≤
−+

k
i

k
i

k
i

x

xx 1

.  Notice that all the xi must pass the test.   

If all the xi do not pass the test, then repeat until they do. 
 
c. FORTRAN 
 
Four arrays:  xold(n), xnew(n), B(n,n), c(n), where n is the number of simultaneous equations. 
 
Read the equations and initial guess 
 
  read *,n 
  do 97 i=1,n 
    97 read*,(b(i,j),j=1,n),c(i) 
  read *,(xold(i),i=1,n) 
    98 do 99 i=1,n 
    99 xnew(i) = xold(i) 
 
Compute the new approximation 
 
  do 100 i=1,n 
  sum = 0.0 
  do 50 j=1,n 
  if( j.eq.i ) goto 50 
  sum = sum +b(i,j)*xold(j) 
    50 continue 
  xnew(i) = ( c(i) – sum )/b(i,i) 
  100 continue 
 
Test for convergence 
 
  do 200 i=1,n 
  if( abs(xnew(i)-xold(i))/abs(xold(i)) .gt. eps ) goto 98  
  200 continue 
 
Put out the result 
 
  print *, xnew 
  stop 
  end 
 
2. Gauss-Seidel Method 
 
The Gauss-Seidel Method hopes to speed up the convergence by using newly computed values 
of xi at once, as soon as each is available.  Thus, in computing xnew(12), for instance, the values 
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of xnew(1), xnew(2), . . ., xnew(11) are used on the right hand side of the formula.  We still need 
to keep separate sets of xnew and xold in order to perform the convergence tests. 
 
  read *,n 
  do 97 i=1,n 
    97 read*,(b(i,j),j=1,n),c(i) 
  read *,(xold(i),i=1,n) 
  do 99 i=1,n 
    99 xnew(i) = xold(i) 
 
 
    98 do 100 i=1,n 
  sum = 0.0 
  do 50 j=1,n 
  if( j.eq.i ) goto 50 
  sum = sum +b(i,j)*xnew(j) 
    50 continue 
  xnew(i) = ( c(i) – sum )/b(i,i) 
  100 continue 
 
  do 200 i=1,n 
  if( abs(xnew(i)-xold(i))/abs(xold(i)) .le. eps ) goto 200  
  do 199 j=1,n 
  199 xold(j) = xnew(j) 
  goto 98 
  200 continue 
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Fortran Sidelight #3 
 
1. Subprograms [Chapter 7] 
 
a. Functions 
 
  function name(argument list) 
  declaration statements 
  dimension/common statements 
  data statements 
  . 
  . 
  . 
  . 
  name =  
  return 
  end 
 
A function subprogram is invoked just like the built-in or intrinsic functions. 
  x = name(argument list) 
 
b. Subroutines 
Subroutines are self-contained program modules. 
 
  subroutine name(argument list) 
  declarations statements 
  dimension/common statements 
  data statements 
  . 
  . 
  . 
  . 
  return 
  end 
 
A subroutine is invoked by a CALL statement.  call name(argument list) 
 
2. Communication Among the Main and Subprograms 
 
a. Argument lists [pages 219 – 221; 222] 
Information is passed between program modules by argument lists.  The variables in an 
argument list of a subprogram must match the argument list in the calling statement in number of 
variables and data types and in the order in which the variables are listed.  However, the 
variables needn’t have identical names in the separate modules.   
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b. Common blocks [pages 225 -228] 
Unlike some other programming languages, Fortran variables are local—they exist only in the 
program modules in which they are declared or used.  However, there is a way to create a list of 
global variables, the common block. 
 
A common block is created by the COMMON statement:  COMMON var1, var2, var3,. . ., varN.  
The variables in the common block will be available to all program modules that contain the 
COMMON statement.  In other words, the COMMON statement must appear in every program 
module that needs access to those variables in the common block.  On the other hand, the 
variable names in the COMMON statement need not be identical in the several program 
modules.  The variables must be listed, though, in the same order and have the same data types, 
etc., in every occurrence of the COMMON statement.  If a variable is passed to a subprogram 
(function or subroutine) via a COMMON statement, it is not also included in an argument list. 
 
The dimensions of an array variable may be specified in a COMMON statement, in which case 
the same variable is not included in a DIMENSION statement. 
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D. Applications 
 
A couple of cases in engineering that give rise to simultaneous linear equations. 
 
1. Electrical Circuit 
 

 
 

(7+2+6)x1 – 2x2 – 6x3 = 300 
-2x1 + (2+5+4+1)x2 – 4x3 – x4 = 0 
-6x1 – 4x2 + (4+9+6)x3 – 9x4 = 0 

-x2 – 9x3 + (9+1+11)x4 = 0 
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2. Truss System 
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V. Interpolation and Curve Fitting 
 
Suppose one has a set of data pairs: 

x f 
x1 f1 

x2 f2 

x3 f3 

M  M  
xm fm 

where fi is the measured (or known) value of f(x) at xi.  We would like to find a function that will 
approximate f(x) for all x in a specified range.  There are two basic approaches:  interpolation and 
curve fitting. 
 
A. Polynomial Interpolation 
 
With interpolation, the approximating function passes through the data points.  Commonly, the 
unknown f(x) is approximated by a polynomial of degree n, pn(x), which is required to pass 
through all the data points, or a subset thereof. 
 
1. Uniqueness 
 
Theorem:  Given {xi} and {fi}, i = 1, 2, 3, . . ., n + 1, there exists one and only one polynomial of 
degree n or less which reproduces f(x) exactly at the {xi}. 
 
Notes 

i) There are many polynomials of degree > n which also reproduce the {fi}. 
ii) There is no guarantee that the polynomial pn(x) will accurately reproduce f(x) for 

 ixx ≠ .  It will do so if f(x) is a polynomial of degree n or less. 
 
Proof:  We require that pn(x) = fi for all i = 1, 2, 3, . . ., n+1.  This leads to a set of simultaneous 
linear equations 
 

11
2
1211 fxaxaxaa n

no =++++ L  

22
2
2221 fxaxaxaa n

no =++++ L  
M  

11
2

1211 ++++ =++++ n
n
nnnno fxaxaxaa L  

which we’d solve for the {ai}.  As long as no two of the {xi} are the same, the solution to such a 
set of simultaneous linear equations is unique. 
 
The significance of uniqueness is that no matter how an interpolating polynomial is derived, as 
long as it passes through all the data points, it is the interpolating polynomial.  There are many 
methods of deriving an interpolating polynomial.  Here, we’ll consider just one. 
 
 



 40

2. Newton’s Divided Difference Interpolating Polynomial 
 
a. Divided differences 
The first divided difference is defined to be (notice the use of square brackets) 

[ ]
ba

bfaf
baf

−
−= )()(

, , ba ≠  

If f(x) is differentiable in the interval [a,b], then there exists 

at least one point between a and b at which [ ]baf
dx

df
,

)( =ξ
.  

In practice, we would take a as close to b as we can (limited 
by the finite precision of the machine) and say that 

( ) [ ]baff ,≈′ ξ . 
 
 
Higher order differences are defined as well: 
 

order notation definition 
0 [ ]1xf  )( 1xf  
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−
−

 

3 [ ]1234 ,,, xxxxf  [ ] [ ]
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−
−
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b. Newton’s divided difference formula 
Build the formula up step by step: 
 
i) two data points (x1,f1) & (x2,f2).  We wish to approximate f(x) for x1 < x < x2. 
 

As a first order approximation, we use a straight line (p1(x) so that  
[ ] [ ]xxfxxf ,, 21 ≅  

xx
xff

xx
fxf

−
−

≅
−

−

2

2

1

1 )()(
 

Solve for f(x) 
[ ] )(,)()( 11211 xpxxfxxfxf =−+≅  

 
ii) Now, if f(x) is a straight line, then f(x) = p1(x).  If not, there is a remainder, R1. 

[ ] [ ]1221121111 ,,))((,)()()()()( xxxfxxxxxxfxxfxfxpxfxR −−=−−−=−=  
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 We don’t know f(x), so we cannot evaluate f[x,x2,x1].  However, if we had a third data point 
 we could approximate [ ] [ ]12312 ,,,, xxxfxxxf ≅ .  Then we have a quadratic 

[ ] [ ] )(,,))((,)()( 2123211211 xpxxxfxxxxxxfxxfxf =−−+−+≅ . 
 
iii) If f(x) is not a quadratic polynomial, then there is still a remainder, R2. 

)()()( 22 xpxfxR −=  
 To estimate R2, we need a fourth data point and the next order divided difference. . . 

[ ] [ ]1234123 ,,,,,, xxxxfxxxxf ≅  
 
iv) Jump to the generalization for n + 1 data points: 

)()()( xRxpxf nn += , where 

[ ] [ ] [ ]+−−+−+= 123211211 ,,))((,)()( xxxfxxxxxxfxxxfxpn  

     [ ]121321 ,,,,)())()(( xxxxfxxxxxxxx nnn LLL +−−−−+  
 
Notice that i) [ ]123432123 ,,,))()(( xxxxfxxxxxxpp −−−+= , etc. and ii) the (x – xi) factors 
are also those of the previous term times one more factor. 
 
c. Inverse interpolation 
The NDDIP lends itself to inverse interpolation.  That is, given f(x), approximate x.  In effect, we 
are solving f(x) = 0 when f(x) is in the form of a table of data.  Simply reverse the roles of the {fi} 
and the {xi}. 
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n

i

i

j
jin fffxffffffpx L  

Set f(x) = 0 and evaluate x = pn(0).  In practice, with a Fortran program, one would just reverse 
the data columns and use the same code. 
 
d. Example 
The difference table is computed thusly: 
 
 do 50 j=1,n+1 
  50 diff(j,1) = f(j) 

do 200 j=2,n+1 
 do 100 i=1,n+1-j+1 
 100 diff(i,j) = ( diff(i+1,j-1) – diff(i,j-1) )/( x(i+j-1) – x(i) ) 
 200 continue 
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Divided Difference Table for n = 6 
j x f f[ ] f[ , ] f[ , , ] f[ , , , , ] f[ , , , , , ] f[ , , , , , , ] 
1 1 -1.5 0.5 1.667 -2.583 1.583 -0.727 0.27 
2 2 -1 3 -3.5 2.167 -0.96 0.353  
3 2.5 0.5 -0.5 0.833 -0.233 0.1   
4 3 0.25 0.75 0.367 0.017    
5 4 1 1.3 0.4     
6 4.5 1.65 1.7      
7 5 2.5       

The sixth degree polynomial constructed from this table is 

[ ] [ ]∏∑
−

==
−+=

1

1

7

2
2116 )(,,,)(

i

j
j

i
i xxxxxfxfxp L . 

Line by line, the Fortran might look like this: 
 fac = ex – x(1) 
 p0 = diff(1,1) 
 p1 = p0 + fac*diff(1,2) 
 fac = fac*(ex-x(2)) 
 p2 = p1 + fac*diff(1,3) 
 fac = fac*(ex-x(3)) 
 p3 = p2 + fac*diff(1,4) 
 fac = fac*(ex-x(4)) 
 p4 = p3 + fac*diff(1,5)) 
 fac = fac*(ex-x(5)) 
 p5 = p4 + fac*diff(1,6) 
 fac = fac*(ex-x(6)) 
 p6 = p5 + fac*diff(1,7) 
Notice that we must use a different variable name for the argument x from the name used for the 
data array x(i). 
 
Of course, it’s more general and flexible to use a DO loop. 
 
 fac = 1.0 
 p = diff(1,1) 
 do 400 j=1,n 
 fac = fac*(ex-x(j)) 
 400 p = p + fac*diff(1,j+1) 
 
e. Issues with high degree polynomials 
If we have a large number of data points, 20 or 100 or 1000s, it does not pay to use the entire 
data table to create a 20 or 100 or 1000th degree polynomial.  The greater the degree, the more 
often the pn goes up and down between the data points.  Our confidence that )()( xpxf n≅  
actually decreases.  It’s better to interpolate on subsets of the data using a p3 or a p4 using data 
points that surround the specified x.  This process can be incorporated into the program. 
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B. Least Squares Fitting 
 
Often, there are errors or uncertainties in the data values, sec005.007.10 ± , for instance.  
Perhaps forcing the approximating function to pass through the data points is not the wisest 
approach.   
 
An alternative approach is to assume a functional form for the unknown f(x) and adjust it to “best 
fit” the uncertain data.  A way to judge what is “best” is needed. 
 
1. Goodness of Fit 
 
The method of least squares uses a particular measure of goodness of fit.   
 
a. Total squared error, E 
First of all, never forget that the word error in this context means uncertainty.  Now, let’s say 
{xi,fi} are the n+1 data values and f(x) is the assumed function.  Then E is defined to be 
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The { iσ } are weighting factors that depend on the nature of the uncertainties in the data {fi}.  

For measured values, the ii f∆=σ , the experimental uncertainties.  Often, we just take all the 

1=iσ , perhaps implying that the experimental uncertainties are all the same..  In that case,  
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b. Least squares fit 
We wish to derive an f(x) which minimizes E.  That means taking the derivative of E with 
respect to each adjustable parameter in f(x) and setting it equal to zero.  We obtain a set of 
simultaneous linear equations with the adjustable parameters as the unknowns.  These are called 
the normal equations. 
 
2. Least Squares Fit to a Polynomial 
 
Assume that 32)( dxcxbxaxf +++= . 
a. Total squared error 
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We have four adjustable parameters:  a, b, c, and d.  Notice that, unlike the interpolating 
polynomial, there may be any number of data pairs, regardless of the number of parameters.  
Let’s take all the 1=iσ . 
 
The partial derivative with respect to the adjustable parameters are 
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b. Normal equations 
Collect the like powers of xi and set the derivatives equal to zero. 
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In terms of the matrix elements we used in solving simultaneous linear equations,  

∑= ifc1    111 =b  

∑= ii fxc2   ∑= ixb12  

∑= ii fxc 2
3   ∑= ixb21  

∑= ii fxc 3
4   ∑= 2

22 ixb , etc. 
The system is solved by any standard method, Gauss-Jordan, Gauss-Seidel, even by Cramer’s 
method. 
 
c. Accuracy of fit 
We’d like to have some statistical measure of how good the fit between the {fi} and f(x) is.  This 
will depend on the relation between E and the { 2

iσ }.  Let’s consider a quantity called (N = n + 1) 
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If all 1=iσ , then E=Χ2 .  Now, on another hand, if iii fxf −≈ )(σ , then gN −≈Χ2 , 
where g is the number of adjustable parameters and N – g is the number of degrees of freedom in 

the mathematical model for the data.  We’d like to see 1
2

≈
−

Χ
gN

 for a “good” fit, while 



 45

1
2
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 indicates that the quality of the fit is ambiguous (sometimes called over fitted), and 

1
2

>>
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 indicates a “poor” fit. 

 
3. Least Squares Fit to Non-polynomial Function 
 
The process is similar when fitting to a function that is not a polynomial.  For instance, say that 

xcexbxaxf ++= cosln)( . 
We wish to fit this function to the data shown at right.  In this case, 
N = 10 and g = 3.  The adjustable parameters are a, b and c.   
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The normal equations are: 
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616.1259.63348.5794.6 =+− cba  
383.2009.49108.5347.5 −=−+− cba  

773.26506.1002009.49259.63 =+− cba  
 

When solved by the Gauss-Jordan method, these yield  
a = -1.041 
b = -1.261 
c = 0.031 

xexxxf 031.0cos261.1ln041.1)( +−−=  

1
7
926.02

<<=
−

Χ
gN

 

The goodness of fit between these data and 
this function is ambiguous.  A glance at a 
graph verifies that the fit is “iffy.”  [That’s 
the technical term for it.] 

 

xi fi 

.24 0.23 

.65 -0.26 

.95 -1.10 
1.24 -0.45 
1.73 0.27 
2.01 0.10 
2.23 -0.29 
2.52 0.24 
2.77 0.56 
2.99 1.00 

 

Least Squares Fit
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VI. Integration 
 

We wish to evaluate the following definite integral:  ∫
b

a

dxxf )( .   

We use numerical methods when 
 i) f(x) is known analytically but is too complicated to integrate analytically or 
 ii) f(x) is known only as a table of data. 
 
A. Newton-Cotes Formulæ 
 
1. Trapezoid Rule 
 
a. Graphs 
Graphically, a definite integral is the area between the x-axis and the curve f(x).  Areas below the 
axis are negative; areas above the axis are positive. 

 
b. Trapezoids 
The area “under” the curve might be approximated most simply by a series of trapezoids and 
triangles. 
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Notice that x1 = a and that x8 = b. 
 
c. Interpolating polynomial 
In effect, we are replacing the integrand, f(x), by a straight line between each pair of points:  

1
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This can be checked by integrating p1(x) analytically. 
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1

−− +−= iiii ffxx  check. 

 
d. Implementation 

For N data points spanning [a,b], there are N – 1 trapezoids.  ( )∑
=

−
−

+
−=

N

i

ii
ii

ff
xxT

2

1
1 2

 

If the data are uniformly spaced, then hxx ii =− −1  for all i, and 

( ) 







++=+= ∑∑

−

==
−

1

2

1

2
1 222

N
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i

N
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i
ii f

ff
hff

h
T . 

The Fortran might look like this: 
 
 n = 10 
 T = 0.0 
 do 100 i=1,n 
 100 T = T + (x(i)-x(i-1))*(f(i)+f(i-1))/2.0 
 
2. Extension to Higher Order Formulæ 
 
a. Forward difference interpolating polynomial 
We’ll take this opportunity to examine an alternative interpolating polynomial—the Forward 
Difference Polynomial. 
 
Imagine we have a table of data pairs (xi,fi) which are uniformly spaced, with spacing h.  The 
forward differences are just the familiar deltas. 
  first order:    1212 )()()( ffxfxfxf i −=−=∆  

  second order:   ))()(())()(()()()( 1223121
2 xfxfxfxfxfxfxf −−−=∆−∆=∆  
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Notice that the differences )( 1xf∆  and )( 1
2 xf∆  are regarded as being evaluated at x = x1.  

Hence the term forward difference. 
 
Notice, too, that the forward differences are related to the divided differences simply by 
multiplying by the denominators.   

[ ]121 ,)( xxfhxf ⋅=∆  

[ ]123
2

1
2 ,,2)( xxxfhxf ⋅=∆  

M  
[ ]1211 ,,,,!)( xxxxfhnxf nn

nn L+⋅=∆  
 
Now, let’s expand the integrand f(x) in a Taylor’s Series about x = x1.  Further, to increase the 

element of confusion, let 
h

xx 1−
=α  so that hxx α+= 1 . 

L+∆−−+∆−+∆+= )(
!3

)2)(1(
)(

!2
)1(

)()()( 1
3

1
2

11 xfxfxfxfxf
αααααα  

Depending on how many terms are kept, this will give a polynomial in α  or in x. 
 
b. Simpson’s rule 
Any number of formulæ may be created by replacing the integrand, f(x), with an interpolating 
polynomial of some specified degree.  If )()()()( 111 xfxfxpxf ∆+=≈ α , the Trapezoid Rule is 
recovered. 
 
Perhaps f(x) has some curvature, so a second degree interpolating polynomial may serve better.   

( )
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Expand the differences. . . 
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   [ ])()(4)(
3 321 xfxfxf
h ++=  

This is Simpson’s Rule, which integrates over segments of three data points (or two intervals of 
h) in one step. 
 
c. Implementation 
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[ ])()(4)(
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Add ‘em up. . . 


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Caveats: i) the data points must be uniformly spaced. 

  ii) n + 1 must be odd, starting with 1 so that 
h

ab
n

−=  is even. 
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B. Numerical Integration by Random Sampling 
 
1. Random Sampling 
 
a. Pseudorandom numbers 
Random numbers are a sequence of numbers, ( )1 2 3, , ,z z z L , lying in the interval (0,1).  There is 
no pattern in the progression of the numbers, nor is any number in the sequence related to any 
other number by a continuous function.  There are statistical tests for randomness in a sequence 
of numbers but we won’t bother with them here. 
 
The operation of a computer is deterministic, so truly random numbers cannot be generated by a 
computer program.  However, sequences can be generated that appear to be random in that the 
sequence passes some of the statistical tests for randomness.  Such a sequence of numbers is 
called pseudorandom. 
 
Here is an algorithm for generating a sequence of pseudorandom numbers: 

( )mcxax ii ,mod 1 +⋅= −  

m
x

z i
i =  

where a, c and m are integers and mod( ) is the modulus function.  The pseudorandom number 
uniformly distributed in the interval (0,1) is zi. 
 
In Fortran, this looks like the following: 
  x = xo 
  do i=1,100 
  x1 = amod(a*x*c,em) 
  z = x1/em 
  x = x1 
  print *,z 
  end do 
This process generates a sequence of numbers {zi} that have some properties of random 
numbers, but in fact the sequence repeats itself—it’s periodic.  The exact sequence depends on 
the initial value, xo, called the seed.  Usually, m is a large integer, commonly a power of 2.  The 
numbers c and m can have no common factor (c can be zero) while a is a multiple of a prime 
factor of m + 1.  The period of the sequence is m, which is why m needs to be large.  For 

instance, we might take 312=m , c = 0 and a = 16807.   
 
b. Intervals 
Suppose we want our pseudorandom numbers to lie in the interval (a,b) rather than (0,1).  This is 
easily done by scaling, or mapping onto the desired interval.  Say 10 ≤≤ z , then 

( ) azaby +⋅−=  will lie in the interval (a,b). 
 
c. Distributions 
The example random number generator mentioned above produces numbers uniformly 
distributed in (0,1).  This means that is (0,1) were divided into equal subintervals, an equal 
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number of random numbers is expected in each of those subintervals.  The probability of the next 
random number in the sequence falling in a particular subinterval is the same for all the 
subintervals spanning (0,1). 
 
It is possible to form sequences of pseudorandom numbers which obey some other distribution 
function, such as Poisson or Gaussian, etc.  We won’t get into that here. 
 
2. Samples of Random Sampling 
 
a. Coin toss 
We have two outcomes for each toss, of equal probability.  We’ll generate an integer, either 1 or 
2, using a pseudorandom number generator. 
 
zi = a uniformly distributed pseudorandom number in (0,1) 
j = int(2*zi) + 1 = 1 or 2 
 
We’ll say that if j = 1, it’s heads, if j = 2 it’s tails. 
 
b. Roll of a die 
In this case we have six outcomes, of equal probability (we hope).  So we need to produce an 
integer from 1 to 6. 
 
j = int(6*zi)+1 = 1, 2, 3, 4, 5 or 6 
 
Now, if it is known that the die is loaded, then we use a different scheme, creating subintervals in 
(0,1) whose lengths reflect the relative probabilities of the faces of the die coming up.  For 
instance, we might say that 
 

zi j 
2.00 ≤< iz  1 

34.02.0 ≤< iz  2 

56.034.0 ≤< iz  3 

72.056.0 ≤< iz  4 

89.072.0 ≤< iz  5 

189.0 << iz  6 

 
3. Integration 
 
Thinking again of the definite integral as an area under a curve, we envision a rectangle whose 
area is equal to the total area under the curve f(x).  The area of that equivalent rectangle is just 
the length of the integration interval (a,b) times the average value of the integrand over that 
interval.  How to take that average?  One way is to sample the integrand at randomly selected 
points. 
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a. One dimensional definite integrals 

∫ ∑
=

≅
1

0 1

)(
1

)(
n

i
ixf

n
dxxf , where the {xi} form a pseudorandom sequence uniformly distributed in 

(0,1).  Over some other interval, ∑∫
=

−≅
n

i
i

b

a

xf
n

abdxxf
1

)(
1

)()( , where { } ( )baxi ,∈ . 

 

Since we are just averaging over a list of numbers, the error is O[
n

1
], just like the deviation of 

the mean. 
 

example:  ∫
1

0

sin xdx  

[ ] 1313.03904.0sin01335.0sin00075.0sin
3
1

sin
1

0

=++=∫ xdx  

[ ] 2910.08776.0sin3904.0sin01335.0sin00075.0sin
4
1

sin
1

0

=+++=∫ xdx  

[ ] 2524.00992.0sin8776.0sin3904.0sin01335.0sin00075.0sin
5
1

sin
1

0

=++++=∫ xdx  

M  
 
The exact result is 0.460. 
 
b. Multi-dimension integrals 
The random sampling approach is particularly useful with 2- and 3-dimensional integrals.  The 
other methods of numerical integration quickly become too messy to set up.   

∫ ∫ ∫ ∑
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≅
1

0

1

0

1

0 1

),,(
1

),,(
n

i
iii zyxf

n
dxdydzzyxf , 

where (xi,yi,zi) is an ordered triple, each member uniformly distributed on (0,1). 
 
We may use three separate sequences of pseudorandom numbers or simply take numbers from 
one sequence three at a time. 
 
c. Alternate integration regions 

i) ( )( )( )∫ ∫ ∫ ∑
=

−−−≅
z

z

y

y

x

x

b

a

b

a

b

a

n

i
iiizzyyxx zyxf

n
abababdxdydzzyxf

1

),,(
1

),,(  

ii) Suppose the integration region is not rectangular.  Then an extra step is needed, to test for and 
discard random points that fall outside the integration region. 

e.g., a circle—discard points for which 122 >+ ii yx . 
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Why do it this way; to ensure that the points are uniformly distributed in all directions.  If points 
are taken uniformly distributed in the radius, the points will be more widely spread the further 
out from the center they lie, not uniformly spread over the area of the circle. 
 
example:  compute the volume of a sphere of radius R.  In this situation, the integrand is 1. 

3
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2

0 0

2

3
4

sin RdrddV
R

πϕθθ
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== ∫ ∫ ∫  

Numerically, 

( )( ) ( )( ) ( )( ) ( ) 3
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∑ . 

Notice this:  the total number of random points generated is n.  However, only m of those lie 

within the spherical volume.  The spherical volume we obtain is equal to 
n
m

 times the volume of 

a cube whose side is 2R.  It’s interesting to see what this fraction is.  

L52359.0
68

3
4

3

3

=== ππ

R

R

V

V

cube

sphere . 

The ratio 
n
m

 should approach this constant as we generate more points and include them in the 

summation. 
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Another way to look at this 
n
m

 issue is to say that f(x) = 1 when 2222 Rzyx iii ≤++  and 0 when 

2222 Rzyx iii >++ .  Then there is no distinction between n and m, and the summation is a sum of 
n – m zeros and m ones. 
 
d. Example 
Evaluate ∫∫

Ω

++ dxdyyx 1ln(sin , where Ω  is the region 
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[If you want to try it, for r = 0.5, I = 0.57.] 
 
This is equivalent to averaging the integrand over a circular area, thusly 

2
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Of course, often the shape of the region of integration isn’t a simple rectangle or circle. 
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e. Fortran 
 
 real*8 x,a,em,sum,ex,why,ax,ay,bx,by,r,r2 
 f(x,y) = sin(log(x+y+1)) 

n = 100 
 r = 0.5 
 r2 = r*r 
 x = 256. 
 em = 2.0**31 
 a = 16807. 
 sum = 0.0 
 ax = 0.5 – r 
 ay = 0.5 – r 
 bx = r + 0.5 
 by = r + 0.5 
 do 500 i=1,n 
 x = amod(a*x,em) 
 ex = x/em*(bx-ax) + ax 
 why = x/em*(by-ay) + ay 
 If( (ex-0.5)*(ex-0.5)+(why-0.5)*(why-0.5) .gt. r2 ) goto 500 
 sum = sum + f(ex,why) 
 500 continue 
 sum = sum*(by-ay)*(bx-ax)/n 
 print *, sum 
 stop 
 end 
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VII. Ordinary Differential Equations 
 
A. Linear First Order Equations 
 

We seek to solve the following equation for x(t):  ),( txf
dt
dx = .  There are analytical methods of 

solution: integration, separation of variables, infinite series, etc.  In practice these may not be 
convenient or even possible.  In such cases we resort to a numerical solution.  The x(t) takes the 
form of a table of data pairs {ti,xi}, rather than a function. 
 
1. One Step Methods 
 
a. Taylor’s Series 
Many numerical solutions derive from the Taylor’s series expansion 
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We are given ),( txf
dt
dx = , so we could substitute this into the series thusly: 
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However, to obtain 
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, etc., we have to use the chain rule. 
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It’s easy to see that this gets very messy rather quickly. 
 
b. Euler’s Method 
Let’s keep just the first two terms of the Taylor’s series:  ooooo Ttxftttxtx +−+= ),()()()( , 
where the To is the sum of all the terms we’re dropping—call it the truncation error.  In what 
follows, we will have to distinguish between the correct or exact solution, x(t), and our 
approximate solution, xi.  We hope )( ii txx ≅ . 
 
With the Euler Method, our algorithm is [given to, x(to) = xo and f(x,t)] 

),()( 11 oooo txfttxx −+=  

),()( 111212 txfttxx −+=  
M  

),()( 11 iiiiii txfttxx −+= ++  

M  
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example:  t
dt
dx

13= , with to = 0 and xo = 4 and 5.0)( 1 ==−+ htt ii . 

The algorithm is:  ( )iiiii tttxx 13)( 11 −+= ++ . 
 
The first few steps in the numerical solution are shown in the following table. 

i t x 
0 0 4 
1 .5 4 
2 1 7.25 
3 1.5 13.75 
4 2 23.5 
M  M  M  

 
2. Error 
 
a. Truncation error 

11 ),( ++ ++= iiiii Ttxhfxx  
Not only do we not know what the exact solution is, we don’t know how far the numerical 
solution deviates from the exact solution.  In the case of a truncated Taylor’s series, we can 
estimate the truncation error by evaluating the first term that is dropped.  For Euler’s formula, 
that’s the third term of the series. 

)(
2

)(
2

22

1 i
i

i xf
h

dt
xdfh

T ′=≈+  

Here’s a graph of both the exact (but unknown) and the numerical solutions. 

 
The deviation from the exact x(t) may tend to increase as the total truncation error accumulates 
from step to step, the further we get from the initial values (to,xo).  The lesson is—make h small. 
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b. Round-off error 
Since the values are stored in finite precision, round-off error accumulates from step to step also.  
Therefore, in traversing an interval bto ≤≤ , we’d like to have as few steps as possible.  In other 
words, we want h to be large.  Consequently, the two sources of error put competing pressure on 
our choice of step size, h.  If we have some knowledge of x(t), we may be able to achieve a 
balance between large and small step size.  Otherwise, it’s trial and error. 
 
c. Higher order methods 
The many numerical algorithms that have been developed over the years for solving differential 
equation seek to reduce the effect of truncation error by using more terms from the Taylor’s 
series, or in some way correcting for the truncation error at each step.  In that way, fewer, larger 
steps can be used. 
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B. Second Order Ordinary Differential Equations 

),,(),,(
2

2

xxtf
dt
dx

xtfx
dt

xd ′==′′= , with initial conditions oxx =)0(  and ovx =′ )0( . 

 
1. Reduction to a System of First Order Equations 
 
a. New Variables 
We start by introducing new variable names:  tz =1 ; xz =2 ; xz ′=3 ; xz ′′=4 .  The first three 
variables are the solutions to the following differential equations: 

11 =′z  

32 zxz =′=′  

43 zxz =′′=′  
These form a set of three simultaneous first order differential equations, 

11 =′z  

32 zz =′  

),,( 32143 zzzfzz ==′  

with the initial conditions 0)0(1 =z , oxz =)0(2  and ovz =)0(3  respectively. 
 
b. Solution 
Any method, such as Euler’s, may now be applied to each first order equation in turn.  Thusly: 

1,11,1 ⋅+=+ hzz ii  

iii zhzz ,3,21,2 ⋅+=+  

iii fhzz ⋅+=+ ,31,3 . 
The Fortran code might look like this: 
  z(1) = 0.0 
  z(2) = xo 
  z(3) = vo 
  h = 0.01 
  do 100 i=1,100 
  z(1) = z(1) + h 
  z(2) = z(2) +h*z(3) 
  z(3) = z(3) + h*f(z(1),z(2),z(3)) 
  write(5,1000) z(1),z(2),z(3) 

1000 format(1x,3e15.5) 
  100 continue 
 
c. Example 

)cos(9 txx ⋅+−′−=′′ ω  

oxx =)0( , ovx =′ )0(  
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In this case, )cos(9),,( txxxtf ⋅+−′−=′ ω , so the algorithm looks like 

1,11,1 ⋅+=+ hzz ii  

iii zhzz ,3,21,2 ⋅+=+  

[ ])cos( ,1,3,31,3 iiii zgzhzz ⋅+−−⋅+=+ ω . 

 
2. Difference Equations 
 
An alternative approach to second order ordinary differential equations is to replace the 
derivatives with finite differences.  The differential equation is replaced by a difference equation. 
 
a. Difference equation 
Using forward divided differences, we obtain 
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Let’s say that we have the second order differential equation  
dctbxxax +++′=′′ . 

The corresponding difference equation is 
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The next step is to solve for the “latest” x. 
222

111 2 dhtchxbhahxahxxxx iiiiiii +++−=+− +−+  

( ) ( ) 22
1

2
1 21 dhtchxxbhahxah iiii ++−+−=− −+  

( )[ ]22
1

2
1 2

1
1

dhtchxxbhah
ah

x iiii ++−+−
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The initial conditions are applied by setting to = 0, x0 = xo and hvxx oo −=−1 . 
 
b. Examples 
 i) gx −=′′  
  Here, 0=== cba  and d = -g. 
  2

11 2 ghxxx iii −−= −+  
 
 ii) gxx −′−=′′  
  This time, a = -1, b = 0, c = 0 and d = -g. 

( )[ ]2
11 2

1
1

ghxxh
h

x iii −−+
+

= −+  

 
c. Discretization error 
Replacing continuous derivatives with finite differences introduces what is known as 
discretization error.  Implicitly, we are assuming a straight line between xi and xi+1 and between 

ix′  and 1+′ix  as well.  There will always be some )( 11 ++ −=∆ ii txx  at each step which will then 
accumulate over the sequence of steps in the numerical solution. 


