

Computer Science 127

Introduction to Fortran &
Scientific Programming

J Kiefer

April 2006

© 2006

 1

Table of Contents
Table of Contents.. 1
I. Introduction ... 3

A. Numerical Methods or Numerical Analysis ... 3
1. Numerical Analysis... 3
2. Newton’s Method for Solving a Nonlinear Equation—an example 3
3. Series ... 5
4. Error .. 5

B. Programming... 6
1. Program Design... 6
2. Branching .. 6
3. Loops... 6
4. I/O ... 6
5. Precision Issues... 7
6. Debugging... 7

II. Fortran ... 8
A. Constants and Variables [Chapters 2 & 8].. 8

1. Constants ... 8
2. Variables ... 8

B. Statements ... 10
1. Non-Executable... 10
2. Executable ... 11
3. Keyboarding.. 11

C. Input and Output [Chapter 3].. 12
1. List directed... 12
2. Formatted I/O .. 12
3. File I/O [Chapter 9]... 13

D. Functions and Subprograms [pages 55 –57 & Chapter 7] .. 15
1. Functions ... 15

Fortran sidelight #0 .. 16
III. Numerical Solution of Nonlinear Equations ... 17

A. Non-Linear Equations—one at a time .. 17
1. The Problem.. 17
2. Bisection.. 17
3. Newton’s Method or the Newton-Raphson Method ... 18
4. Secant Method... 18
5. Hybrid Methods .. 19

B. Systems of Nonlinear Equations ... 20
1. Newton-Raphson... 20
2. Implicit Iterative Methods... 20

Fortran Sidelight #1.. 22
IV. Linear Algebra ... 24

A. Matrix Arithmetic ... 24
1. Matrices... 24
2. Addition & Subtraction... 24
3. Multiplication.. 24

 2

4. Inverse Matrix ... 25
Fortran Sidelight #2.. 26
B. Simultaneous Linear Equations .. 27

1. The Problem.. 27
2. Gaussian Elimination.. 27
3. Matrix Operations ... 28
4. Gauss-Jordan Elimination... 30

C. Iterative Methods .. 32
1. Jacobi Method ... 32
2. Gauss-Seidel Method .. 33

Fortran Sidelight #3.. 35
1. Subprograms [Chapter 7].. 35
2. Communication Among the Main and Subprograms ... 35

D. Applications .. 37
1. Electrical Circuit ... 37
2. Truss System... 38

V. Interpolation and Curve Fitting ... 39
A. Polynomial Interpolation .. 39

1. Uniqueness.. 39
2. Newton’s Divided Difference Interpolating Polynomial.. 40

B. Least Squares Fitting... 43
1. Goodness of Fit ... 43
2. Least Squares Fit to a Polynomial .. 43
3. Least Squares Fit to Non-polynomial Function.. 45

VI. Integration.. 46
A. Newton-Cotes Formulæ.. 46

1. Trapezoid Rule .. 46
2. Extension to Higher Order Formulæ... 47

B. Numerical Integration by Random Sampling ... 50
1. Random Sampling... 50
2. Samples of Random Sampling .. 51
3. Integration... 51

VII. Ordinary Differential Equations .. 56
A. Linear First Order Equations ... 56

1. One Step Methods ... 56
2. Error .. 57

B. Second Order Ordinary Differential Equations .. 59
1. Reduction to a System of First Order Equations .. 59
2. Difference Equations ... 60

 3

I. Introduction

A. Numerical Methods or Numerical Analysis

1. Numerical Analysis

a. Definition
“Concerned with solving mathematical problems by the operations of arithmetic.” That is, we
manipulate (÷×−+ ,,/ , etc.) numerical values rather than derive or manipulate analytical

mathematic expressions (∫ xxedx
dx
d bx ln,,,, , etc.).

We will be dealing always with approximate values rather than exact formulæ.

b. History
Recall the definition of a derivative in Calculus:

)(lim
0

xg
x
f

dx
df

x
=

∆
∆=

→∆
,

where)()(12 xfxff −=∆ and 12 xxx −=∆ . We will work it backwards, using
x
f

dx
df

∆
∆≅ .

In fact, before Newton and Leibnitz invented Calculus, the numerical methods were the methods.
Mathematical problems were solved numerically or geometrically, e.g., Kepler and Newton with
their orbits and gravity. Many of the numerical methods still used today were developed by
Newton and his predecessors and contemporaries.

They, or their “computers,” performed numerical calculations by hand. That’s one reason it
could take Kepler so many years to formulate his “Laws” of planetary orbits. In the 19th and
early 20th centuries adding machines were used, mechanical and electric. In business, also,
payroll and accounts were done by “hand.”

Today, we use automatic machines to do the arithmetic, and the word computer no longer refers
to a person, but to the machine. The machines are cheaper and faster than people, however, they
still have to be told what to do, and when to do it—computer programming.

2. Newton’s Method for Solving a Nonlinear Equation—an example

a. Numerical solution
Let’s say we want to evaluate the cube root of 467. That is, we want to find a value of x such
that 4673 =x . Put another way, we want to find a root of the following equation:

0467)(3 =−= xxf .

 4

If f(x) were a straight line, then
()

0)()(1 =
=

+=
dx

xxdf
xfxf o

o . In fact,

0)(1 ≠xf , but let’s say that 0)(1 ≅xf and
solve for x1.

() () ()
()o

o
o

o

o
o xf

xf
x

dx

xdf
xfxf

xx
′

−≅
−

+=
)(

1
1 .

Note that we are using
dx

xxdf
xf o

o
)(

)(
=

=′ .

Having now obtained a new estimate for the
root, we repeat the process to obtain a sequence
of estimated roots which we hope converges on
the exact or correct root.

()
()1

1
12 xf

xf
xx

′
−≅

()
()2

2
23 xf

xf
xx

′
−≅

etc.
In our example, 467)(3 −= xxf and 23)(xxf =′ . If we take our initial guess to be 6=ox ,
then by iterating the formula above, we generate the following table:

i x)(xf)(xf ′
0 6 -251 108
1 8.324 109.7718 207.8706
2 7.796 6.8172 182.3316
3 7.759 0.108 0.0350

()
() 32407.8

108
251

6
1

1 =−−=
′

−≅
o

o
o xf

xf
xx

()
() 79597.7

8706.207
7768.109

32407.8
1

1
12 =−=

′
−≅

xf
xf

xx

()
() 75858.7

33156.182
817273.6

79597.7
2

2
23 =−=

′
−≅

xf
xf

xx

[Note: The pocket calculator has a (yx) button, but a computer may do xxx ⋅⋅ to get x3.]

b. Analytical solution
How might we solve for the cube root of 467 analytically or symbolically? Take logarithms.

4673 =x
467lnln3 =x

467ln
3
1

ln =x

 5

3
467ln

ex = = 7.758402264. . .

We used the (ln) button on our pocket calculator, followed by the (ex) button. In earlier times,
we’d have used log tables. But, whence cometh those tables and how does the calculator
evaluate ln 467 or e2.0488?

3. Series

() () () L+−+−−−= 32 1
3
1

1
2
1

1ln xxxx

L+−+−=
!7!5!3

sin
75

3 xxx
xx

L+++++=
!4!3!2

1
432 xxx

xe x

The infinite series are exact. However, in practice we always keep a finite number of terms. In
principle, we can achieve arbitrary precision, if we have the necessary patience. Pocket
calculators and computer programs add up enough terms in a series to achieve a specified
precision, say 8 or 16 significant digits.

4. Error

In this context, the term error does not refer to a mistake. Rather, it refers to the idea of
deviation or of uncertainty. Every measured value is uncertain, according to the precision of the
measuring instrument. Every computed value is uncertain, according to the number of
significant digits carried along or according to the number of terms retained in the summation of
a series. Consequently, all numerical solutions are approximate.

Oftentimes, in discussing an example problem, the correct exact solution is known, so it is
possible to determine how an approximate numerical solution deviates from that exact solution.
Indeed, algorithms are often tested by applying them to problems having known exact solutions.
However, in real life, we don’t know the correct exact solution. We can’t know how far our
approximate solutions deviate from the correct exact unknown solution. In other words, we have
to approximate the solution to a problem, but also we can only estimate the error.

Fortunately, we have means of estimating error. A goodly portion of the discussion in a
Numerical Methods textbook is devoted to rigorous estimation of error. In this course, we won’t
concern ourselves with a detailed discussion of error analysis. Nonetheless, we want to be
always aware of the error issue, keeping in mind at least qualitatively the limitations of a
numerical solution. From time to time in the paragraphs that follow some aspects of the error
involved with a particular algorithm will be briefly discussed.

 6

B. Programming

The computer carries out the tedious arithmetic, but it must be told what to do. That is the
function of a computer program. A program may be written in one of any number of
programming languages, however there are certain features or issues that all languages have in
common.

1. Program Design

a. Stages
 Conception—define the problem
 Develop the algorithm—map out or outline the solution
 Code—write the program
 Debug & verify—trace the program; perform trial runs with known results; correct logical
 & syntax errors

b. Building blocks
 Sequential operations—instructions done one after the other in a specified order
 Branching operations—selecting alternative sequences of operations
 Looping operations—repeating subsets of operations
 I/O operations—reading and writing data

2. Branching

a. Simple yes or no—select between just 2 alternative actions

b. Nested branches—a sequence of decisions or branches; decision tree

c. Select case—more than two alternative actions

3. Loops

a. Counted loop—a section of code is executed a specified number of times

b. Conditional loop—a section of code is iterated until a specified condition is met

c. “Infinite’ loop—the condition for ending the loop never is encountered, so the program
never ends

4. I/O

a. Input—keyboard or data file

b. Output—monitor, output file, printer; numbers, text, graphics

 7

5. Precision Issues

a. Binary
The computer does its arithmetic with binary numbers, that is, base-2. E.g., 0, 1, 10, 11, 100,
101, 110, 111, etc. We are accustomed to working and thinking with base-10 numbers. In
producing the machine language code (the “executable”) and carrying out calculations, all
numerical values are translated from base-10 to base-2 then back again for output. Usually, we
don’t need to care about this. However, it can be a source of loss of precision in our numerical
values because the machine stores values with only finite precision.

b. Precision
A single binary digit (0 or 1) is called a bit. Eight bits make up a byte. Within the machine, the
unit of information that is transferred at one time to/from the CPU and main memory is called a
word. The size of a word, or the word length, varies from one machine to another. Typically,
it’ll be from 4 to 64 bits. A 4-byte word contains 32 bits, etc.

One memory cell or memory location holds one or more words. Let’s say it’s one word, or 4
bytes. Whatever information (number) is stored in one such memory cell must be expressible as
a string of 32 bits and no more. For instance, a non-terminating binary fraction will be
truncated, e.g., (0.1)10 = (0.00011001100110011. . .)2. Only 32 digits will be stored in memory.
When translated back into decimal, the number will be (0.09999997)10, not (0.1)10. Similarly,
the finite precision places a limit on the largest and the smallest numerical value that can be
stored in a memory cell.

In the back of our minds, we always remain aware of the physical limitations of the machine.

6. Debugging

When syntax errors are all eliminated, the program may very well run smoothly to completion.
Perhaps it produces results which are clearly absurd; perhaps the results appear quite plausible.
A programmer must always take steps to convince itself that the program is working correctly;
the temptation to assume must be resisted.

One of the most insidious assumptions is that the program is doing what the programmer
intended it to do. Perhaps, a typing error has produced a statement that has no syntax error, but
does a different operation from that intended. Perhaps the logical sequence of steps written by
the programmer doesn’t accomplish the task intended by the programmer. This why program
tracing is so important, why it is essential to insert print statements all through the program to
display the intermediate values of variables, why it is essential to check and double check such
things as argument lists and dimensions and the values of indices—checking not what the
programmer intended, but what the program actually does.

The other, almost easier, aspect of debugging involves applying the program to a problem whose
solution is already known. It also involves repeating a numerical solution with different values
of various parameters such as step size and convergence tolerance. It involves comparing a
numerical solution for consistency with previous experience.

 8

II. Fortran

A. Constants and Variables [Chapters 2 & 8]

In Fortran, there are five types of data: integer, real, complex, character and logical.

1. Constants

Constants are values that do not change.

a. Integers
An integer is a +/- whole number, such as 8 or –379 or 739238. The maximum number of digits
allowed is machine specific, depending on the word length of the machine. Integer constants are
never displayed with a decimal point. In contrast to some other programming languages, Fortran
treats numbers with decimal points differently from numbers without decimal points.

b. Real numbers
Fortran uses the term real to refer to numbers that may have a fractional part such as 65.4 or
0.00873, not to refer to a number whose imaginary part is zero. A real number always has a
decimal point. Again, the largest and smallest allowed numerical value is machine dependent. A
real constant is stored in exponential or scientific format—as a real mantissa < 1 and an integer
exponent: 0.7368x1014. The constant may be displayed in either exponential or decimal form:
37.67x10-3 or 0.03767.

c. Complex constants
In Fortran, the term complex refers to a number having both a real and an imaginary part. A
complex constant is stored in the form of two real constants, in two separate memory cells—one
for the real part and one for the imaginary part, in keeping with the mathematical definition of a
complex number as an ordered pair of numbers.

d. Character constants
Character constants are also known as character strings. The character string is a sequence of
alphanumeric characters enclosed in single quotes: ‘Now is the time for all…’ or ‘3’ or ‘x = ‘.
Notice that ‘3’ is a character constant while 3 is an integer constant.

e. Logical constants
There are two logical constants: .TRUE. and .FALSE. Notice the leading and ending periods.
Logical constants and logical operators are enclosed by periods.

2. Variables

Numerical values are stored in memory cells. Each memory cell is assigned a unique address so
that the program may refer to each cell. With constants, the contents of the memory cells do not
change. However, the contents of a cell associated with a variable may change as the program
executes.

 9

a. Variable names and memory cells
In the Fortran program, each variable is given a name. That name is associated uniquely with
one memory cell (or two in the cases of complex and double precision variables). The machine
maintains a reference table containing every constant and variable name along with the memory
address(es) assigned to each.

b. Data types
A variable is defined or declared to be of a particular data type, and stores numerical values of
that type only. The major data types in Fortran are integer, real, double precision, complex,
character, and logical. Double precision data has twice the number of digits as normal real or
single precision data. Therefore, a double precision value occupies two memory cells.
Mismatched data will be translated into the data type of the variable it’s being stored in. For
instance, if we attempt to store the value 45.678 in an integer variable, the fractional part will be
truncated, so the value becomes 45. Likewise, an integer such as 567 becomes a real value
(567.0) if stored in a real variable.

c. Assignment statements
The program instruction for storing a numerical value in a particular memory cell is called an
assignment statement. Commonly, such an instruction is represented symbolically as →386 jot.
In English, this says “store the integer value 386 in the memory cell associated with the variable
name jot.”

In Fortran, the symbol for the assignment operation is the equal sign and the line in the program
code would be jot = 386. Keep in mind that is not the same meaning as the mathematical
statement of equality. jot = 386 does not mean “jot equals 386.” The arithmetic assignment
statements in a Fortran program resemble mathematical equations, but they are not equations.
They are instructions for the machine to carry out certain arithmetical operations and store the
result in a specified variable.

d. Variable names
There are restrictions on what string of characters may be used as a variable name. Originally,
the variable name was restricted to no more than 6 characters. Some implementations of Fortran
allow longer variable names. Only alphanumeric characters are allowed. The first character of
the name must be a letter. Usually, no distinction is made between upper and lower case—
Fortran is case insensitive.

Unless otherwise declared, variables beginning with the letters i through n are assumed to be of
the integer data type, while names beginning with a – h & o – z are assumed to be real. These
assumptions are called implicit data typing. The implicit data typing is overridden by any
explicit data type declaration.

 10

B. Statements

A statement is a single instruction. There are several types of statements in Fortran.
 non-executable executable
 declaration assignment
 external if
 dimension goto
 common stop
 end do
 parameter i/o statements
 data return
 format call

1. Non-Executable

Non-executable statements are not executed or performed when the program is running. They
are implemented during the compiling step, when the Fortran code is translated into the machine
language. Usually, non-executable statements (except for END) are located at the top of the
program code, or program list. Some statements must appear at the beginning of the list, others
may appear at any place in the program.

a. Declaration
Declaration statements specify the data types of the variables.

b. Parameter
The PARAMETER statement in effect defines a variable name to be a constant.

c. Dimension and Common
These statements define what are called subscripted variables, which are like matrices.

d. Data
The DATA statement is used to give initial values to variables.

e. End
The END statement signals the end of a program block or module.

f. External
The EXTERNAL statement identifies a subprogram or module that is defined outside of the
main program.

g. Format
The FORMAT statement specifies how output is to be displayed.

 11

2. Executable

Executable statements are instructions that are carried out when the program is running.

a. Assignment
An assignment statement causes the value on the right side of the equal sign to be stored in the
location identified with the variable name on the left side of the equal sign. The left side must
always be a single variable name. The right side may be an expression or a constant or a single
variable name. For instance,
 ex = 47.0*sin(theta) why = sqrt(why) + 7.0 zed = 0.9805 que = zed

b. GoTo
A GOTO statement transfers control to a specified program statement. The GOTO may be
conditional or unconditional. The statement may appear as two words (go to) or as one word
(goto).

c. Do
The DO statement signals the beginning of a do-loop, which is a program block that is executed
multiple times in a row.

d. Read, Print, Write
These statements are used to put data into or out of the program.

e. Stop
The STOP statement terminates execution of the program. A STOP statement may appear
anywhere in the program and there may be more than one STOP statement.

f. Return
The RETURN statement appears in a subprogram or module and has the function of returning
control to the calling program or module.

g. Call
The CALL statement transfers control to the particular kind of subprogram called a subroutine.

3. Keyboarding

Historically, Fortran statements were punched on computer cards (Holerinth cards), one
statement per card. The physical limitations of those cards is still reflected in the restrictions
placed on the keyboarding of Fortran statements:
 i) the statement must lie entirely in columns 7 thru 72;
 ii) column 6 is reserved for a character designating continuation of a statement;
 iii) a c or C placed in column 1 designates a comment line;
 iv) statement labels are placed in columns 1 through 5;
 v) blank spaces within a statement are ignored.

 12

C. Input and Output [Chapter 3]

Two kinds of input & output are defined: list directed and formatted.

1. List directed

a. Reading—free format
 READ *, var1,var2,var3,…
The values are read from the keyboard—just keyboard the numbers delimited by commas or
spaces and end with the ENTER (or RETURN) key. The numbers needn’t be entered all on one
line; however, each READ statement starts reading from a new line. The numbers can be
entered in integer, decimal or exponential form. Character data or logical data can also be
entered, if the corresponding variable has been so declared.

b. Printing—free format
 PRINT, *,var1,var2,var3,…
Values are printed to the monitor, preformatted. The print list may also contain constants. Each
PRINT statement begins a new line or a new record. If the record exceeds the width of the
monitor screen, the record is continued on the next line.

2. Formatted I/O

With formatted I/O, we specify how the output is to appear: the spacing, number of digits
displayed, etc.

a. Syntax of a FORMAT statement
 sl format(ccc,specifier1,specifier2,…)
The sl is the statement label that identifies the format statement. The ccc stands for the carriage
control character. The specifier (also known as an edit descriptor) is a code that specifies how a
value is to be printed. There must be one specifier for every variable or constant in the print list.

b. Formatted output—using the edit descriptors
 PRINT sl, var1,var2,var3,…
 sl FORMAT(1x,spec1,spec2,spec3,…)
The specifier or descriptor must match the data type of the variable in the order that the variables
are listed, otherwise gibberish will be printed out.

If the field width (w) is not large enough, then a string of asterisks (*) are printed. It’s advisable
to use E-format for all real variables when the program is being developed.

If the list of specifiers is shorter than the print list then the computer starts over at the beginning
of the format list.

A FORMAT statement may be placed anywhere in the program module. Any number of output
(PRINT or WRITE) statements may use the same FORMAT statement.

 13

Formatted input can be used also, but why bother?

c. Edit descriptors
Each printed value is said to occupy a certain field, that is, a certain number of columns. In the
following table, w = the width of the field and d = the number of digits to display.

edit descriptor description
Iw integer value

Fw.d real value in decimal form
Ew.d real value in exponential form
Dw.d double precision value in exponential form
Gw.d real value in “general purpose” form
Aw character value
rx an r number of blank spaces
Tc tab to column c

TRs tab right by as s number of spaces
TLs tab left by an s number of spaces

/ start a new line or record
r() repeat () r times

‘ text ‘ character strings

3. File I/O [Chapter 9]

a. Opening and Closing units
 OPEN(n,file=’filename’) and CLOSE(n)
In this context, the word unit refers to I/O unit or device. An I/O device might be the monitor,
the keyboard, a disk file, a punched card reader, a punched card puncher, a teletypewriter, a line
printer, a computer port, and so on. Most commonly, it’ll be the monitor, keyboard or a disk file.
Each device has to be given a unit number (n) and a name (filename). That is the purpose of the
OPEN statement.

b. Reading
Each READ statement starts with the next new record or line. There is free format reading
 READ(n,*) var1,var2,var3,...
and formatted reading
 READ(n,sl) var1,var2,var3,…
We don’t usually bother with formatted input. However, some commercially produced programs
require formatted input.

c. Writing
Each WRITE statement starts a new record. Again, there is free format writing
 WRITE(n,*) var1,var2,var3,…
and formatted writing
 WRITE(n,sl) var1,var2,var3,…
 sl FROMAT(1x,………)
In contrast to reading, we normally do use formatted writing so that output is displayed in an
attractive and legible form.

 14

d. Data file issues
 i) sequential vs. direct access
Most often input files are read line by line from the top to the bottom. This is referred to as
sequential access. The program cannot go back and forth within the data file. In a direct access
file, specified records are accessed in any order, usually identified by a record number. Direct
access is also known as random access.
 ii) open statement parameters
There are some additional parameters that may be used in an OPEN statement.
 ERR=sl transfers control to statement sl if an I/O error occurs
 IOSTAT=integer variable name stores the value of the error code IOSTAT
 ACCESS ‘sequential’ or ‘random access’
 iii) read statement parameters
There are some additional parameters that may be used in a READ statement.
 ERR=sl1 transfers control to statement sl1 is a read error occurs.
 END=sl2 transfers control if the end of the data file is encountered.
The END parameter is particularly useful when reading a data file whose length is unknown. If
the END parameter is not present, the program will stop if an end of file is encountered.
 iv) data files
Data files are plain text files. So, for instance, if you use a word processor to create an input file,
be sure to save it as plain text. Likewise, output files can be subsequently edited with a plain text
editor, such as NotePad. Of course, plain text editors prefer to attach the .txt extension. A data
file can have any 3-letter extension you please. A Fortran source file, which is also a plain text
file, must have the .for extension.

 15

D. Functions and Subprograms [pages 55 –57 & Chapter 7]
In Fortran, program modules are called functions and subprograms. There are several types of
program modules.

1. Functions

a. Intrinsic functions
A mathematical function, such as ex, is evaluated by summing a series. One could write ones
own subprogram to add up the series expansions of ex, sin(x), ln(x) or x , etc. However, some
common functions are already done in Fortran. Those are the intrinsic or built-in functions such
as SQRT(x), EXP(x), SIN(x) and so on.

b. Statement function
A statement function is a one-line subprogram defined by the programmer. It’s a non-executable
statement, so it must appear at the top of the program module, before the first executable
statement and following the DIMENSION, COMMON, DATA, and DECLARATION
statements. A statement function must have at least one dummy argument. It may have several.
 FUNC(X) = 37.0*X + TAN(X)
Later in the program, the function is invoked just like an intrinsic function, thusly Z = FUNC(B).
The function may have any name not being used as a variable name. If a statement function is
given the same name as an intrinsic function, it will supercede the intrinsic function.

c. Function subprogram
A function subprogram is a multiline user-defined function. The function subprogram is self-
contained in that it must have its own type declaration statements, its own dimensioning
statements, its own data statements, and so on. Rather than a STOP statement, the function
subprogram must have at least one RETURN statement, which has the effect of returning control
to the program module calling the function. There may be STOP statements in a function
subprogram. The function subprogram returns to the calling module a single value that is stored
in a variable name of the appropriate data type. The name of that variable must be the same as
the name of the function. The function subprogram must have at least one dummy argument.
However, that dummy argument need not actually be used to pass data to the function. In the
calling module, the function subprogram is invoked in the same manner as an intrinsic function.

d. Subroutine
The subroutine is really a complete independent program. It may have STOP statements, but
like the function subprogram it must have at least one RETURN statement. A subroutine may
return to the calling module any number of values, not just a single one. It may return no values
at all, but simply carry out some task such as printing output. Information may be conveyed to
the subroutine through an argument list and/or through COMMON statements. The subroutine
may have no arguments at all. A subroutine is invoked by the CALL statement.

 16

Fortran sidelight #0

Statement labels and GoTo statements and DO statements [page 70s; 101 – 103; Chapter 5]

There are no line numbers in Fortran. Any program statement may be given a statement label or
a statement number. The statement label is used to refer to a program statement within the
program. Statement labels must be unique and must appear in the first 5 columns of the line.
However, they need not be in any particular order.

A GoTo statement is an unconditional transfer of control as in GoTo 304, which means that the
statement labeled 304 will be executed next, no matter what. The GoTo statement must include
a statement label, pointing to an executable line which appears in the program.

A DO statement begins a Do Loop. There are two forms of Do Loop. One makes use of a
statement label to define the end of the code to be iterated, the other form uses the End Do
statement for the same purpose. For example

 Do 400 i = 1,10 Do i = 1,10
 . .
 . .
 . .
 400 Continue EndDo

It is permitted to transfer out of a Do Loop, but not into one. Do Loops can be nested.

 17

III. Numerical Solution of Nonlinear Equations

A. Non-Linear Equations—one at a time

There are closed form solutions for quadratic and even 3rd degree polynomial equations. Higher
degree polynomials can sometimes be factored. However, in general there is no closed form
analytical solution to non-linear equations.

1. The Problem

a. Roots & zeroes
We seek to find x such that 0)(=xf or
perhaps such that)()(xgxf = . In the
latter case, we merely set

0)()()(=−= xgxfxh . We are looking
for a root of the equation 0)(=xf or a
zero of the function f(x).

b. Graphical solution
Plot f(x) vs. x—observe where the graph
crosses the x-axis or plot f(x) and g(x) vs.
x and observe where the two curves intersect. A graph won’t give a precise root, but we can use
the graph to choose an initial estimate of the root.

2. Bisection

a. Setup

For brevity, say fo = f(xo) and f1 = f(x1), etc.
Say further that α=x is the desired root.
The graph shows us that 01 <⋅ ffo because
f(x) crosses the x-axis between [xo,x1].

b. Algorithm
Let us find the midpoint of [xo,x1], and call it
b.

 i)
2

1xx
b o +

= and then)(bffb =

 ii) Does 0≅bf ? If so, quit ‘cause b≅α .
 iii) If not, then
 if 0<⋅ bo ff , then set bxo = and bo ff =
 or
 if 01 <⋅ ffb , then set instead bx =1 and bff =1 .

 18

 iv) Is ε≤− oxx1 ? If so, quit and set
2

1xxo +
=α .

 v) If not, then repeat beginning with step (i).

It is well also to count the iterations and to place a limit on the number of iterations that will be
performed. Otherwise, the program could be trapped in an infinite loop. Also, it is well to test
for the cases 0>⋅ bo ff and 01 >⋅ bff . It may be that the function does not cross the x-axis
between fo and f1, or crosses more than once.

3. Newton’s Method or the Newton-Raphson Method

a. Taylor’s series
Any well-behaved function can be expanded in a Taylor’s series:

L+
′′′

−+
′′

−+′−+=
!3

)(
)(

!2
)(

)()()()()(32 o
o

o
oooo

xf
xx

xf
xxxfxxxfxf .

Let’s say that x is “close” to xo and keep just the first two terms.
)()()()(ooo xfxxxfxf ′−+≈

We want to solve for x such that f(x) = 0.
0)()()(=′−+ ooo xfxxxf

)(
)(

o

o
o xf

xf
xx

′
−=

In effect we have approximated f(x) by a straight line; x is the intercept of that line with the x-
axis. It may or may not be a good approximation for the root α .

b. Algorithm
 i) choose an initial estimate, xi
 ii) compute f(xi) and)(ixf ′

 iii) compute the new estimate:
)(
)(

1
i

i
ii xf

xf
xx

′
−=+

 iv) return to step (ii) with i = i + 1

c. Comments
It turns out that if the initial estimate of the root is a good one, then the method is guaranteed to
converge, and rapidly. Even if the estimate is not so good, the method will converge to a root—
maybe not the one we anticipated.

Also, if there is a 0=′f point nearby the method can have trouble. It’s always a good thing to
graph f(x) first.

4. Secant Method

a. Finite differences
A finite difference is merely the difference between two numerical values.

 19

12 xxx −=∆ or ii xxx −=∆ +1
Derivatives are approximated by divided differences.

x
f

xx
xfxf

xf
ii

ii

∆
∆=

−
−

≅′
+

+

1

1)()(
)(

We may regard this divided difference as an estimate of f ′ at xi or at xi+1 or at the midpoint
between xi and xi+1.

b. The Secant method
We simply replace f ′ by the divided difference in the Newton-Raphson formula:

)()(
)(

1

1
1

−

−
+ −

−
−=

ii

ii
iii xfxf

xx
xfxx .

Notice the indices: i + 1, i, i – 1. With the Secant Method, we don’t use a functional form for
f ′ . We do have to carry along two values of f, however.

Care must be taken that)()(1−− ii xfxf not be too small, which would cause an overflow error

by the computer. This may occur if)()(1−≈ ii xfxf due to the finite precision of the machine.

This may also give a misleading result for the convergence test of)()(1−− ii xfxf . To avoid
that, we might use the relative deviation to test for convergence.

ε≤
− −

)(

)()(1

i

ii

xf

xfxf

c. Compare and contrast
Both the Newton-Raphson and Secant Methods locate just one root at a time.

Newton: requires evaluation of f and of f ′ at each step; converges rapidly.

Secant: requires evaluation only of f at each step; converges less rapidly.

5. Hybrid Methods

A hybrid method combines the use in one program of two or more specific methods. For
instance, we might use bisection to locate a root roughly, then use the Secant Method to compute
the root more precisely. For instance, we might use bisection to locate multiple roots of an
equation, then use Newton-Raphson to refine each one.

 20

B. Systems of Nonlinear Equations

Consider a system of n nonlinear equations with n unknowns.

0),,,,(3211 =nxxxxf …

0),,,,(3212 =nxxxxf …

M
0),,,,(321 =nn xxxxf …

1. Newton-Raphson

a. Matrix notation
Let’s write the system of equations as a matrix equation.

02

1

=



















=

nf

f

f

f M

The unknowns form a column matrix also.



















=

nx

x

x

x M
2

1

. We might write the system of equations

compactly as 0)(=xf .

b. The Method
The Newton-Raphson method for simultaneous equations involves evaluating the derivative

matrix, F , whose elements are defined to be
j

i
ij x

f
F

∂
∂= . If the inverse 1−F exists, then we can

generate a sequence of approximations for the roots of functions {fi}.
)()(1

1 kkkk xfxFxx ⋅−= −
+

At each step, all the partial derivatives must be evaluated and the F matrix inverted. The
iteration continues until all the 0≅if . If the inverse matrix does not exist, then the method
fails. If the number of equations, n, is more than a handful, the method becomes very
cumbersome and time consuming.

2. Implicit Iterative Methods

The Newton-Raphson method is an iterative method in the sense that it generates a sequence of
successive approximations by repeating, or iterating, the same formula. However, the term
iterative method as commonly used refers to a particular class of algorithms which might more
descriptively be called implicit iterative methods. Such algorithms occur in many numerical
contexts as we’ll see in subsequent sections of this course. At this point, we apply the approach
to the system of simultaneous nonlinear equations.

 21

a. General form

Let



















=

nα

α
α

α M
2

1

 be the solution matrix to the equation 0)(=xf . I.e., 0)(=αf . Now, solve

algebraically each 0)(=xf i for xi. This creates a new set of equations,)(xFx ii ′= , where x ′
refers to the set of unknowns {xj} excluding xi. Algebraically, this looks funny, because each
unknown is expressed in terms of all the other unknowns, hence the term implicit. Of course,
what we really mean is

)(1 kk xFx =+ .
Alternatively, in terms of matrix elements, the equations take the form

),,(,,2,11, knkkiki xxxFx …=+ .

b. Algorithm
In a program, the iterative method is implemented thusly:
 i) choose an initial guess, ox

 ii) compute)(1 oxFx =

 iii) test 0)(1 ≅xf
 iv) if yes, set 1x=α and exit

 v) if no, compute)(12 xFx = , etc.

c. Convergence
We hope that α=

∞→
k

k
xlim . For what conditions will this be true? Consider a region R in the

space of {xi} such that hx jj ≤−α for nj ≤≤1 and suppose that for x in R there is a positive

number µ such that µ≤
∂

∂∑
=

n

j j

i

x

xF

1

)(
. Then, it “can be shown” that if ox lies in R, the iterative

method will converge. What does this mean, practically? It means that if the initial guess, ox , is
“close enough” to α , then the method will converge to α after some number, k, of iterations.
Big deal.

 22

Fortran Sidelight #1

IF statements [Chapter 4]

There are two varieties of IF statements. The one liner, and the IF-THEN-ELSE block. In both
cases, a decision on what action to take next is made on the basis of some logical relation.

A logical relation is a statement which may be true or false. Logical or relational operators [.OR.
.AND. .LE. .LT. .GE. .GT. .NE. .EQ.] are used to form logical relations. For instance, the
statement sqrt(x).eq.3 is a logical relation. If the square root of x is 3, then the relation has the
logical value .TRUE. If x = 16, though, then the relation has the logical value .FALSE.

One-liners

IF(logical relation) action statement

If the logical relation in the parentheses is .TRUE. then the action statement is executed. If the
logical relation is .FALSE. the action statement is not executed. In either case, execution
continues with the line following the IF statement, unless the action statement, when executed,
redirects program control to another statement. In fact, such redirection of control is a common
use of a one liner IF. The action statement may be any Fortran executable statement such as
assignment, I/O, or GoTo but not a DO statement or another IF statement.

IF-THEN-ELSE block

The one liner is limited to a single action statement when the logical relation is .TRUE. The IF-
THEN-ELSE construction allows more flexibility is setting up alternative blocks of program
statements.

 IF(logical relation) THEN
 { block A }
 ELSE
 { block B }
 END IF

In this case, if the logical relation is .TRUE., then the program code Block A is executed. If the
logical relation is .FALSE., then the code Block B is executed. Each code block may be a single
executable statements or many executable statements. Once Block A or B is executed, the
program continues with the statement following the END IF statement.

 23

Additional logical branches may be nested within the IF-THEN-ELSE. Thus:

 IF(logical relation 1) THEN
 { block A }
 ELSE IF(logical relation 2) THEN
 { block B }
 ELSE IF(logical relation 3 } THEN
 { block C }
 ELSE
 { block D }
 END IF

Obviously, it’s easy to become tangled up in these nested ELSEs.

 24

IV. Linear Algebra

A. Matrix Arithmetic

The use of matrix notation to represent a system of simultaneous equations was introduced in
section III-B-1 above, mainly for the sake of brevity. In solving simultaneous linear equations,
matrix operations are central. There follows, therefore, a brief review of the salient properties of
matrices. Fuller discussion of the properties of matrices may be found in various texts,
particularly Linear Algebra texts.

1. Matrices

A matrix is an n x m array of numbers. In these notes a matrix is symbolized by a letter with a
line on top, B ; n is the number of rows and m is the number of columns. If n = m, the matrix is
said to be a square matrix. If the matrix has only one column(row) it is said to be a column(row)
matrix. The jth element in the ith row of a matrix is indicated by subscripts, bij. Mathematically,
an entity like a matrix is defined by a list of properties and operations, for instance the rules for
adding or multiplying two matrices. Also, matrices can be regarded as one way to represent
members of a group in Group Theory.
















=

34

24

14

33

23

13

32

22

12

31

21

11

b

b

b

b

b

b

b

b

b

b

b

b

B















=

3

2

1

x

x

x

x

2. Addition & Subtraction

a. Definition
The addition is carried out by adding the respective matrix elements.

BAC +=

ijijij bac +=

b. Rules
The sum of two matrices is also a matrix. Only matrices having the same number of rows and
the same number of columns may be added. Matrix addition is commutative and associative.

ABBA +=+)()(CBACBA ++=++

3. Multiplication

a. Definition

BAC =
L+++== ∑ jijiji

k
kjikij babababac 332211

b. Rules
The product of two matrices is also a matrix. The number of elements in a row of A must equal
the number of elements in a column of B . Matrix multiplication is not commutative.

 25

ABBA ≠
A matrix may be multiplied by a constant, thusly: ijij aqc ⋅= . The result is also a matrix.

4. Inverse Matrix

a. Unit matrix
The unit matrix is a square matrix with the diagonal elements equal to one and the off-diagonal
elements all equal to zero. Here’s a 3x3 unit matrix:
















=

100

010

001

U

b. Inverse
The inverse of a matrix, B , (denoted 1−B) is a matrix such that UBBBB == −− 11 . The
inverse of a particular matrix may not exist, in which case the matrix is said to be singular.

The solution of a system of simultaneous equations in effect is a problem of evaluating the
inverse of a square matrix.

 26

Fortran Sidelight #2

Dimensions, Arrays, and Matrices [Chapter 6; pages 223 – 224]

In Fortran, a matrix is called a dimensioned variable, or an array, or a subscripted variable. The
DIMENSION statement specifies the size of an array and the number of indices or subscripts.

Consider a two dimensional matrix, B . An element of that matrix might be written as bij. In the
Fortran code this becomes b(i,j). An element of a one-dimensional matrix x (either a row or
column matrix) is represented by x(i).

For instance, the following DIMENSION statement sets up one square matrix and two column
matrices:

DIMENSION b(20,20), x(20), c(13)

Notice that the array names are delimited by commas. The numbers in the parentheses are upper
limits on the ranges of the indices. Therefore, both the indices of the variable b range from 1 to
20. The index of variable c ranges from 1 to 13. Later versions of Fortran allow array indices to
be negative or zero: DIMENSION b(0:19,0:19), x(-3,16). Referring to an index value outside
the range specified in the DIMENSION statement can lead to “unpredictable results.”

The DIMENSION statement appears at the top of a program module, preceding any executable
statements. There may be more than one DIMENSION statement. The array names may be
listed in any order. Dimensioning is not global, so any program module that uses array variables
must have its own DIMENSION statement(s).

In Fortran, the addition or multiplication of matrices must be spelled out with DO loops. In other
words, there are no array operations.

Multiply a column matrix by a square matrix
 DO 200 i=1,20
 c(i) = 0.0
 DO 100 j=1,20
 100 c(i) = c(i) + b(i,j)*x(j)
 200 CONTINUE

Multiply two square n x n matrices
 DO 300 i=1,n
 DO 300 j=1,n
 d(i,j) = 0.0
 DO 200 k=1,n
 200 d(i,j) = d(i,j) + a(i,k)*b(k,j)
 300 CONTINUE

Multiply a column matrix by a constant
 DO 100 j=1,n
 100 d(j) = que*d(j)

 27

B. Simultaneous Linear Equations

1. The Problem

a. Simultaneous equations
We wish to solve a system of n linear equations in n unknowns.

11212111 cxbxbxb nn =++ L

22222121 cxbxbxb nn =++ L

M

nnnnnn cxbxbxb =++ L2211
where the {bij} and the {ci} are constants.

b. Matrix notation
The system of equations can be written as a matrix multiplication.

cxB = , where



















=

nx

x

x

x M
2

1

,



















=

nc

c

c

c M
2

1

 and



















=

nnnn

n

n

bbb

bbb

bbb

B

L
MOMM

L
L

21

22221

11211

.

When n is small (40≤n , say) a direct or one-step method is used. For larger systems, iterative
methods are preferred.

2. Gaussian Elimination

In a one-step approach, we seek to evaluate the inverse of the B matrix.

cxB =
cBxxBB 11 −− ==

The solution is obtained by carrying out the matrix multiplication cB 1− .

a. Elimination
You may have seen this in high school algebra. For brevity’s sake, let’s let n = 3.

1313212111 cxbxbxb =++

2323222121 cxbxbxb =++

3333232131 cxbxbxb =++
In essence, we wish to eliminate unknowns from the equations by a sequence of algebraic steps.

normalization i) multiply eqn. 1 by
11

21

b
b

− and add to eqn. 2; replace eqn. 2.

reduction ii) multiply eqn 1 by
11

31

b
b

− and add to eqn. 3; replace eqn. 3.

 28

1313212111 cxbxbxb =++

2323222 cxbxb ′=′+′

3333232 cxbxb ′=′+′

iii) multiply eqn. 2 by
22

32

b
b

′
′

− and add to eqn. 3; replace eqn. 3.

1313212111 cxbxbxb =++

2323222 cxbxb ′=′+′

3333 cxb ′′=′′
We have eliminated x1 and x2 from eqn.3 and x1 from eqn. 2.

back substitution iv) solve eqn. 3 for x3, substitute in eqn. 2 & 1.
 solve eqn. 2 for x2, substitute in eqn. 1.
 solve eqn. 1 for x1.

b. Pivoting
Due to the finite number of digits carried along by the machine, we have to worry about the
relative magnitudes of the matrix elements, especially the diagonal elements. In other words, the
inverse matrix, 1−B may be effectively singular even if not actually so. To minimize this
possibility, we commonly rearrange the set of equations to place the largest coefficients on the
diagonal, to the extent possible. This process is called pivoting.
e.g.

37x2 – 3x3 = 4
19x1 – 2x2 + 48x3 = 99
7x1 + 0.6x2 +15x3 = -9

rearrange
19x1 – 2x2 + 48x3 = 99

37x2 – 3x3 = 4
7x1 + 0.6x2 +15x3 = -9

or
7x1 + 0.6x2 +15x3 = -9

37x2 – 3x3 = 4
19x1 – 2x2 + 48x3 = 99

3. Matrix Operations

In preparation for writing a computer program, we’ll cast the elimination and back substitution in
the form of matrix multiplications.

a. Augmented matrix

[]















==

3333231

2232221

1131211

:

cbbb

cbbb

cbbb

cBA

 29

b. Elementary matrices
Each single step is represented by a single matrix multiplication.

The elimination steps:



















−=

100

01

001

11

21
1 b

b
S





















−

=

10

010
001

11

31
2

b
b

S





















′
′

−

=

10

010
001

22

32
3

b
b

S

















′′′′
′′′=

333

22322

1131211

123

00

0

cb

cbb

cbbb

ASSS

The first back substitution step:





















′′

=

33

1
1

00

010
001

b

Q
















′′′=

3

22322

1131211

1231

100

0

x

cbb
cbbb

ASSSQ

This completes one cycle. Next we eliminate one unknown from the second row using
















′−=

100

10

001

234 bS
















′′′′=

3

222

1131211

12314

100

00

x

cb

cbbb

ASSSQS



















′′
=

100

0
1

0

001

22
2 b

Q
















=

3

2

1131211

123142

100

010

x

x

cbbb

ASSSQSQ

 30

This completes the second cycle. The final cycle is















 −
=

100

010

01 13

5

b

S














 −
=

100

010

01 12

6

b

S





















=
100

010

00
1

11

3

b
Q
















=

3

2

1

123142563

100

010

001

x

x

x

SSSQSQSSQ

We identify the inverse matrix 123142563

1 SSSQSQSSQB =− . Notice that the order of the matrix
multiplications is significant. Naturally, we want to automate this process, and generalize to n
equations.

4. Gauss-Jordan Elimination

a. Inverse matrix
We might multiply all the elementary matrices together before multiplying by the augmented
matrix. That is, carry out the evaluation of 1−B , then perform AB 1− .

b. Algorithm









≠⋅−=

==

−−

−

−

kiaaaa

ki
a

a
a

k
kj

k
ik

k
ij

k
ij

k
kk

k
kjk

kj

11

1

1

1,

,1

,1

+=
=
=

nkj

ni

nk

n = number of equations
k = index of the step or cycle
aij = elements of the original augmented matrix, A .

For each value of k, do the i = k line first.

 31

c. Example
n = 3 and n + 1 = 4

1624 321 =++ xxx

103 321 =++ xxx

1252 321 =++ xxx

k = 0















=

12521

10131

16214

A

e.g., for k = 1, i = 1, j = 1 & j = 4

10
11

0
111

11 ==
a

a
a 4

4
16

0
11

0
141

14 ===
a

a
a

01111

11
0
21

0
21

1
21 =⋅−=−= aaaa

k = 1























=′

8
2
9

4
7

0

6
2
1

4
11

0

4
2
1

4
1

1

A

k = 2























=′′

11
46

11
46

00

11
24

11
2

10

11
38

11
5

01

A

k = 3















=′′′

1100

2010

3001

A
















=

1

2

3

x

 32

C. Iterative Methods

For n > about 40, the one-step methods take too long and accumulate too much round-off error.

1. Jacobi Method

a. Recursion formula
Each equation is solved for one of the unknowns.

()
11

131221211
1

b
xbxbxbcx nn−−−−= L

()
22

232312122
1

b
xbxbxbcx nn−−−−= L

M

()
nn

nnnnnnn b
xbxbxbcx

1
112211 −−−−−−= L

In short
ii

n

ji
j

jijii b
xbcx

1

1 














−= ∑

≠
=

, i = 1, 2, 3, . . .,n.

Of course, we cannot have bii = 0 for any i. So before starting the iterative program, we may
have to reorder the equations. Further, it can be shown that if ijii bb ≥ for each i, then the
method will converge, though it may be slowly. Here’s an outline of the “showing.”

The first iteration is: VxAx +−= 01

After several iterations, VAxAVAAAxAAAAVxAx kk

kk

kkk +=+−=+−= +

++

+ 01

231

0

1231

1 LL

We want 0lim 01 =+

∞→
xA k

k
, which will happen if 1≤

ii

ij

b

b
.

b. Algorithm

We need four arrays: kx , 1+kx , B , and c .

Firstly, select an initial guess (k = 0)





















=

0

0
2

0
1

0

nx

x

x

x
M

.

Secondly, compute a new x (k + 1 = 1).

ii

n

ji
j

k
jiji

k
i b

xbcx
1

1

1
















−= ∑

≠
=

+

 33

Thirdly, test for convergence. ε≤
−+

k
i

k
i

k
i

x

xx 1

. Notice that all the xi must pass the test.

If all the xi do not pass the test, then repeat until they do.

c. FORTRAN

Four arrays: xold(n), xnew(n), B(n,n), c(n), where n is the number of simultaneous equations.

Read the equations and initial guess

 read *,n
 do 97 i=1,n
 97 read*,(b(i,j),j=1,n),c(i)
 read *,(xold(i),i=1,n)
 98 do 99 i=1,n
 99 xnew(i) = xold(i)

Compute the new approximation

 do 100 i=1,n
 sum = 0.0
 do 50 j=1,n
 if(j.eq.i) goto 50
 sum = sum +b(i,j)*xold(j)
 50 continue
 xnew(i) = (c(i) – sum)/b(i,i)
 100 continue

Test for convergence

 do 200 i=1,n
 if(abs(xnew(i)-xold(i))/abs(xold(i)) .gt. eps) goto 98
 200 continue

Put out the result

 print *, xnew
 stop
 end

2. Gauss-Seidel Method

The Gauss-Seidel Method hopes to speed up the convergence by using newly computed values
of xi at once, as soon as each is available. Thus, in computing xnew(12), for instance, the values

 34

of xnew(1), xnew(2), . . ., xnew(11) are used on the right hand side of the formula. We still need
to keep separate sets of xnew and xold in order to perform the convergence tests.

 read *,n
 do 97 i=1,n
 97 read*,(b(i,j),j=1,n),c(i)
 read *,(xold(i),i=1,n)
 do 99 i=1,n
 99 xnew(i) = xold(i)

 98 do 100 i=1,n
 sum = 0.0
 do 50 j=1,n
 if(j.eq.i) goto 50
 sum = sum +b(i,j)*xnew(j)
 50 continue
 xnew(i) = (c(i) – sum)/b(i,i)
 100 continue

 do 200 i=1,n
 if(abs(xnew(i)-xold(i))/abs(xold(i)) .le. eps) goto 200
 do 199 j=1,n
 199 xold(j) = xnew(j)
 goto 98
 200 continue

 35

Fortran Sidelight #3

1. Subprograms [Chapter 7]

a. Functions

 function name(argument list)
 declaration statements
 dimension/common statements
 data statements
 .
 .
 .
 .
 name =
 return
 end

A function subprogram is invoked just like the built-in or intrinsic functions.
 x = name(argument list)

b. Subroutines
Subroutines are self-contained program modules.

 subroutine name(argument list)
 declarations statements
 dimension/common statements
 data statements
 .
 .
 .
 .
 return
 end

A subroutine is invoked by a CALL statement. call name(argument list)

2. Communication Among the Main and Subprograms

a. Argument lists [pages 219 – 221; 222]
Information is passed between program modules by argument lists. The variables in an
argument list of a subprogram must match the argument list in the calling statement in number of
variables and data types and in the order in which the variables are listed. However, the
variables needn’t have identical names in the separate modules.

 36

b. Common blocks [pages 225 -228]
Unlike some other programming languages, Fortran variables are local—they exist only in the
program modules in which they are declared or used. However, there is a way to create a list of
global variables, the common block.

A common block is created by the COMMON statement: COMMON var1, var2, var3,. . ., varN.
The variables in the common block will be available to all program modules that contain the
COMMON statement. In other words, the COMMON statement must appear in every program
module that needs access to those variables in the common block. On the other hand, the
variable names in the COMMON statement need not be identical in the several program
modules. The variables must be listed, though, in the same order and have the same data types,
etc., in every occurrence of the COMMON statement. If a variable is passed to a subprogram
(function or subroutine) via a COMMON statement, it is not also included in an argument list.

The dimensions of an array variable may be specified in a COMMON statement, in which case
the same variable is not included in a DIMENSION statement.

 37

D. Applications

A couple of cases in engineering that give rise to simultaneous linear equations.

1. Electrical Circuit

(7+2+6)x1 – 2x2 – 6x3 = 300
-2x1 + (2+5+4+1)x2 – 4x3 – x4 = 0
-6x1 – 4x2 + (4+9+6)x3 – 9x4 = 0

-x2 – 9x3 + (9+1+11)x4 = 0



















−−
−−−
−−−

−−

=

021910

091946

014122

30006215

A ; solution:



















=

13.6

3.13

35.9

5.26

x

 38

2. Truss System

































−
−

−−

−
−−

=

010000001

60001000000

00015
40000

6000005
31000

000005
4010

40000000110

360000000600

60000000001

A ; solution:

































−
−

−

=

600

600

67.866

33.1083

1250

600

1000

600

x

 39

V. Interpolation and Curve Fitting

Suppose one has a set of data pairs:

x f
x1 f1

x2 f2

x3 f3

M M
xm fm

where fi is the measured (or known) value of f(x) at xi. We would like to find a function that will
approximate f(x) for all x in a specified range. There are two basic approaches: interpolation and
curve fitting.

A. Polynomial Interpolation

With interpolation, the approximating function passes through the data points. Commonly, the
unknown f(x) is approximated by a polynomial of degree n, pn(x), which is required to pass
through all the data points, or a subset thereof.

1. Uniqueness

Theorem: Given {xi} and {fi}, i = 1, 2, 3, . . ., n + 1, there exists one and only one polynomial of
degree n or less which reproduces f(x) exactly at the {xi}.

Notes

i) There are many polynomials of degree > n which also reproduce the {fi}.
ii) There is no guarantee that the polynomial pn(x) will accurately reproduce f(x) for

 ixx ≠ . It will do so if f(x) is a polynomial of degree n or less.

Proof: We require that pn(x) = fi for all i = 1, 2, 3, . . ., n+1. This leads to a set of simultaneous
linear equations

11
2
1211 fxaxaxaa n

no =++++ L

22
2
2221 fxaxaxaa n

no =++++ L
M

11
2

1211 ++++ =++++ n
n
nnnno fxaxaxaa L

which we’d solve for the {ai}. As long as no two of the {xi} are the same, the solution to such a
set of simultaneous linear equations is unique.

The significance of uniqueness is that no matter how an interpolating polynomial is derived, as
long as it passes through all the data points, it is the interpolating polynomial. There are many
methods of deriving an interpolating polynomial. Here, we’ll consider just one.

 40

2. Newton’s Divided Difference Interpolating Polynomial

a. Divided differences
The first divided difference is defined to be (notice the use of square brackets)

[]
ba

bfaf
baf

−
−=)()(

, , ba ≠

If f(x) is differentiable in the interval [a,b], then there exists

at least one point between a and b at which []baf
dx

df
,

)(=ξ
.

In practice, we would take a as close to b as we can (limited
by the finite precision of the machine) and say that

() []baff ,≈′ ξ .

Higher order differences are defined as well:

order notation definition
0 []1xf)(1xf
1 []12 , xxf [] []

12

12

xx
xfxf

−
−

2 []123 ,, xxxf [] []
13

1223 ,,
xx

xxfxxf
−
−

3 []1234 ,,, xxxxf [] []
14

123234 ,,,,
xx

xxxfxxxf
−
−

M M M
n []121 ,,,, xxxxf nn L+ [] []

11

121231 ,,,,,,,,
xx

xxxxfxxxxf

n

nnnn

−
−

+

−+ LL

b. Newton’s divided difference formula
Build the formula up step by step:

i) two data points (x1,f1) & (x2,f2). We wish to approximate f(x) for x1 < x < x2.

As a first order approximation, we use a straight line (p1(x) so that
[] []xxfxxf ,, 21 ≅

xx
xff

xx
fxf

−
−

≅
−

−

2

2

1

1)()(

Solve for f(x)
[])(,)()(11211 xpxxfxxfxf =−+≅

ii) Now, if f(x) is a straight line, then f(x) = p1(x). If not, there is a remainder, R1.

[] []1221121111 ,,))((,)()()()()(xxxfxxxxxxfxxfxfxpxfxR −−=−−−=−=

 41

 We don’t know f(x), so we cannot evaluate f[x,x2,x1]. However, if we had a third data point
 we could approximate [] []12312 ,,,, xxxfxxxf ≅ . Then we have a quadratic

[] [])(,,))((,)()(2123211211 xpxxxfxxxxxxfxxfxf =−−+−+≅ .

iii) If f(x) is not a quadratic polynomial, then there is still a remainder, R2.

)()()(22 xpxfxR −=
 To estimate R2, we need a fourth data point and the next order divided difference. . .

[] []1234123 ,,,,,, xxxxfxxxxf ≅

iv) Jump to the generalization for n + 1 data points:

)()()(xRxpxf nn += , where

[] [] []+−−+−+= 123211211 ,,))((,)()(xxxfxxxxxxfxxxfxpn

 []121321 ,,,,)())()((xxxxfxxxxxxxx nnn LLL +−−−−+

Notice that i) []123432123 ,,,))()((xxxxfxxxxxxpp −−−+= , etc. and ii) the (x – xi) factors
are also those of the previous term times one more factor.

c. Inverse interpolation
The NDDIP lends itself to inverse interpolation. That is, given f(x), approximate x. In effect, we
are solving f(x) = 0 when f(x) is in the form of a table of data. Simply reverse the roles of the {fi}
and the {xi}.

[] () []∑ ∏
+

=

−

=
+−==

1

2

1

1
121)(,,,)(

n

i

i

j
jin fffxffffffpx L

Set f(x) = 0 and evaluate x = pn(0). In practice, with a Fortran program, one would just reverse
the data columns and use the same code.

d. Example
The difference table is computed thusly:

 do 50 j=1,n+1
 50 diff(j,1) = f(j)

do 200 j=2,n+1
 do 100 i=1,n+1-j+1
 100 diff(i,j) = (diff(i+1,j-1) – diff(i,j-1))/(x(i+j-1) – x(i))
 200 continue

 42

Divided Difference Table for n = 6
j x f f[] f[,] f[, ,] f[, , , ,] f[, , , , ,] f[, , , , , ,]
1 1 -1.5 0.5 1.667 -2.583 1.583 -0.727 0.27
2 2 -1 3 -3.5 2.167 -0.96 0.353
3 2.5 0.5 -0.5 0.833 -0.233 0.1
4 3 0.25 0.75 0.367 0.017
5 4 1 1.3 0.4
6 4.5 1.65 1.7
7 5 2.5

The sixth degree polynomial constructed from this table is

[] []∏∑
−

==
−+=

1

1

7

2
2116)(,,,)(

i

j
j

i
i xxxxxfxfxp L .

Line by line, the Fortran might look like this:
 fac = ex – x(1)
 p0 = diff(1,1)
 p1 = p0 + fac*diff(1,2)
 fac = fac*(ex-x(2))
 p2 = p1 + fac*diff(1,3)
 fac = fac*(ex-x(3))
 p3 = p2 + fac*diff(1,4)
 fac = fac*(ex-x(4))
 p4 = p3 + fac*diff(1,5))
 fac = fac*(ex-x(5))
 p5 = p4 + fac*diff(1,6)
 fac = fac*(ex-x(6))
 p6 = p5 + fac*diff(1,7)
Notice that we must use a different variable name for the argument x from the name used for the
data array x(i).

Of course, it’s more general and flexible to use a DO loop.

 fac = 1.0
 p = diff(1,1)
 do 400 j=1,n
 fac = fac*(ex-x(j))
 400 p = p + fac*diff(1,j+1)

e. Issues with high degree polynomials
If we have a large number of data points, 20 or 100 or 1000s, it does not pay to use the entire
data table to create a 20 or 100 or 1000th degree polynomial. The greater the degree, the more
often the pn goes up and down between the data points. Our confidence that)()(xpxf n≅
actually decreases. It’s better to interpolate on subsets of the data using a p3 or a p4 using data
points that surround the specified x. This process can be incorporated into the program.

 43

B. Least Squares Fitting

Often, there are errors or uncertainties in the data values, sec005.007.10 ± , for instance.
Perhaps forcing the approximating function to pass through the data points is not the wisest
approach.

An alternative approach is to assume a functional form for the unknown f(x) and adjust it to “best
fit” the uncertain data. A way to judge what is “best” is needed.

1. Goodness of Fit

The method of least squares uses a particular measure of goodness of fit.

a. Total squared error, E
First of all, never forget that the word error in this context means uncertainty. Now, let’s say
{xi,fi} are the n+1 data values and f(x) is the assumed function. Then E is defined to be

()()∑
+

=
−=

1

1

2
2

1n

i
ii

i

xffE
σ

The { iσ } are weighting factors that depend on the nature of the uncertainties in the data {fi}.

For measured values, the ii f∆=σ , the experimental uncertainties. Often, we just take all the

1=iσ , perhaps implying that the experimental uncertainties are all the same.. In that case,

()()∑
+

=
−=

1

1

2
n

i
ii xffE .

b. Least squares fit
We wish to derive an f(x) which minimizes E. That means taking the derivative of E with
respect to each adjustable parameter in f(x) and setting it equal to zero. We obtain a set of
simultaneous linear equations with the adjustable parameters as the unknowns. These are called
the normal equations.

2. Least Squares Fit to a Polynomial

Assume that 32)(dxcxbxaxf +++= .
a. Total squared error

()∑
+

=
−−−−=

1

1

232
2

1n

i
iiii

i

dxcxbxafE
σ

We have four adjustable parameters: a, b, c, and d. Notice that, unlike the interpolating
polynomial, there may be any number of data pairs, regardless of the number of parameters.
Let’s take all the 1=iσ .

The partial derivative with respect to the adjustable parameters are

 44

()∑ −−−−−=
∂
∂

i
iiii dxcxbxaf

a
E 322

()∑ −−−−−=
∂
∂

i
iiiii dxcxbxafx

b
E 322

()∑ −−−−−=
∂
∂ 3222 iiiii dxcxbxafx

c
E

()∑ −−−−−=
∂
∂

i
iiiii dxcxbxafx

d
E 3232

b. Normal equations
Collect the like powers of xi and set the derivatives equal to zero.

∑∑∑∑ +++=
i

i
i

i
i

i
i

i xdxcxbaf 32

∑∑∑∑∑ +++=
i

i
i

i
i

i
i

i
i

ii xdxcxbxafx 432

∑∑∑∑∑ +++=
i

i
i

i
i

i
i

i
i

ii xdxcxbxafx 54322

∑∑∑∑∑ +++=
i

i
i

i
i

i
i

i
i

ii xdxcxbxafx 65433

In terms of the matrix elements we used in solving simultaneous linear equations,

∑= ifc1 111 =b

∑= ii fxc2 ∑= ixb12

∑= ii fxc 2
3 ∑= ixb21

∑= ii fxc 3
4 ∑= 2

22 ixb , etc.
The system is solved by any standard method, Gauss-Jordan, Gauss-Seidel, even by Cramer’s
method.

c. Accuracy of fit
We’d like to have some statistical measure of how good the fit between the {fi} and f(x) is. This
will depend on the relation between E and the { 2

iσ }. Let’s consider a quantity called (N = n + 1)

()∑
=

−
=Χ

N

i i

ii fxf

1
2

2
2)(

σ
.

If all 1=iσ , then E=Χ2 . Now, on another hand, if iii fxf −≈)(σ , then gN −≈Χ2 ,
where g is the number of adjustable parameters and N – g is the number of degrees of freedom in

the mathematical model for the data. We’d like to see 1
2

≈
−

Χ
gN

 for a “good” fit, while

 45

1
2

<<
−

Χ
gN

 indicates that the quality of the fit is ambiguous (sometimes called over fitted), and

1
2

>>
−

Χ
gN

 indicates a “poor” fit.

3. Least Squares Fit to Non-polynomial Function

The process is similar when fitting to a function that is not a polynomial. For instance, say that

xcexbxaxf ++= cosln)(.
We wish to fit this function to the data shown at right. In this case,
N = 10 and g = 3. The adjustable parameters are a, b and c.

()
210

1

2 cosln∑
=

−−−=Χ=
i

x
iii

icexbxafE

The normal equations are:

()∑ ∑ ∑ ∑=++ ii
x

iiii xfexcxxbxa i lnlncoslnln 2

∑ ∑ ∑ ∑=++ ii
x

iiii xfexcxbxxa i coscos)(coscosln 2

∑ ∑ ∑ ∑=++ iiii x
i

xx
i

x
i efecexbexa 2)(cosln

616.1259.63348.5794.6 =+− cba
383.2009.49108.5347.5 −=−+− cba

773.26506.1002009.49259.63 =+− cba

When solved by the Gauss-Jordan method, these yield
a = -1.041
b = -1.261
c = 0.031

xexxxf 031.0cos261.1ln041.1)(+−−=

1
7
926.02

<<=
−

Χ
gN

The goodness of fit between these data and
this function is ambiguous. A glance at a
graph verifies that the fit is “iffy.” [That’s
the technical term for it.]

xi fi

.24 0.23

.65 -0.26

.95 -1.10
1.24 -0.45
1.73 0.27
2.01 0.10
2.23 -0.29
2.52 0.24
2.77 0.56
2.99 1.00

Least Squares Fit

-1.5
-1

-0.5
0

0.5
1

1.5

0 0.5 1 1.5 2 2.5 3 3.5

x

f(
x)

data fit

 46

VI. Integration

We wish to evaluate the following definite integral: ∫
b

a

dxxf)(.

We use numerical methods when
 i) f(x) is known analytically but is too complicated to integrate analytically or
 ii) f(x) is known only as a table of data.

A. Newton-Cotes Formulæ

1. Trapezoid Rule

a. Graphs
Graphically, a definite integral is the area between the x-axis and the curve f(x). Areas below the
axis are negative; areas above the axis are positive.

b. Trapezoids
The area “under” the curve might be approximated most simply by a series of trapezoids and
triangles.

 47

() () L+−
+

+−
+

23
32

12
21

22
xx

ff
xx

ff

Notice that x1 = a and that x8 = b.

c. Interpolating polynomial
In effect, we are replacing the integrand, f(x), by a straight line between each pair of points:

1

1
111

)()(
)()()(

−

−
−− −

−
−+=

ii

ii
ii xx

xfxf
xxxfxp .

This can be checked by integrating p1(x) analytically.

() i

i

i

i

i

i

x
x

ii

ii
i

x

xii

ii
iii

x

x ii

ii
ii x

xx
ff

x
x

xx
ff

xxfdx
xx
ff

xxf
1

11
1

1
1

2

1

1
11

1

1
11 2
)(

−

−− −

−
−

−

−
−−

−

−
−− −

−
−

−
−

+−=
−
−

−+∫

 111
1111

111 2222 −−−
−−−−

−−− +−−+−+−= iiii
iiiiiiii

iiii fxfx
fxfxfxfx

fxfx

2222

1111 −−−− −−+= iiiiiiii fxfxfxfx

 ()()112
1

−− +−= iiii ffxx check.

d. Implementation

For N data points spanning [a,b], there are N – 1 trapezoids. ()∑
=

−
−

+
−=

N

i

ii
ii

ff
xxT

2

1
1 2

If the data are uniformly spaced, then hxx ii =− −1 for all i, and

() 







++=+= ∑∑

−

==
−

1

2

1

2
1 222

N

i
i

N
N

i
ii f

ff
hff

h
T .

The Fortran might look like this:

 n = 10
 T = 0.0
 do 100 i=1,n
 100 T = T + (x(i)-x(i-1))*(f(i)+f(i-1))/2.0

2. Extension to Higher Order Formulæ

a. Forward difference interpolating polynomial
We’ll take this opportunity to examine an alternative interpolating polynomial—the Forward
Difference Polynomial.

Imagine we have a table of data pairs (xi,fi) which are uniformly spaced, with spacing h. The
forward differences are just the familiar deltas.
 first order: 1212)()()(ffxfxfxf i −=−=∆

 second order:))()(())()(()()()(1223121
2 xfxfxfxfxfxfxf −−−=∆−∆=∆

 48

Notice that the differences)(1xf∆ and)(1
2 xf∆ are regarded as being evaluated at x = x1.

Hence the term forward difference.

Notice, too, that the forward differences are related to the divided differences simply by
multiplying by the denominators.

[]121 ,)(xxfhxf ⋅=∆

[]123
2

1
2 ,,2)(xxxfhxf ⋅=∆

M
[]1211 ,,,,!)(xxxxfhnxf nn

nn L+⋅=∆

Now, let’s expand the integrand f(x) in a Taylor’s Series about x = x1. Further, to increase the

element of confusion, let
h

xx 1−
=α so that hxx α+= 1 .

L+∆−−+∆−+∆+=)(
!3

)2)(1(
)(

!2
)1(

)()()(1
3

1
2

11 xfxfxfxfxf
αααααα

Depending on how many terms are kept, this will give a polynomial in α or in x.

b. Simpson’s rule
Any number of formulæ may be created by replacing the integrand, f(x), with an interpolating
polynomial of some specified degree. If)()()()(111 xfxfxpxf ∆+=≈ α , the Trapezoid Rule is
recovered.

Perhaps f(x) has some curvature, so a second degree interpolating polynomial may serve better.

()
∫∫∫ 



 ∆−+∆+=+≈

2

0
1

2
11

2

0
12)(

2
1

)()()()(
3

1

αααααα dxfxfxfhdhxphdxxf
x

x

 



 ∆+∆+=)(

3
1

)(2)(2 1
2

11 xfxfxfh

Expand the differences. . .





 +−+−+≈∫)(

3
1

)(
3
2

)(
3
1

)(2)(2)(2)(123121

3

1

xfxfxfxfxfxfhdxxf
x

x

 [])()(4)(
3 321 xfxfxf
h ++=

This is Simpson’s Rule, which integrates over segments of three data points (or two intervals of
h) in one step.

c. Implementation

[])()(4)(
3

)(321

3

1

xfxfxf
h

dxxf
x

x

++=∫

 49

[])()(4)(
3

)(543

5

3

xfxfxf
h

dxxf
x

x

++=∫

M

[])()(4)(
3

)(11

1

1

+− ++=∫
+

−

nnn

x

x

xfxfxf
h

dxxf
n

n

Add ‘em up. . .
















−−+≈ ∑∑∫

=∆
=

+

=∆
=

)()()(4)(2
3

)(

2
2

1

2
1

bfafxfxf
h

dxxf
n

i
i

i

n

i
i

i

b

a

Caveats: i) the data points must be uniformly spaced.

 ii) n + 1 must be odd, starting with 1 so that
h

ab
n

−= is even.

 50

B. Numerical Integration by Random Sampling

1. Random Sampling

a. Pseudorandom numbers
Random numbers are a sequence of numbers, ()1 2 3, , ,z z z L , lying in the interval (0,1). There is
no pattern in the progression of the numbers, nor is any number in the sequence related to any
other number by a continuous function. There are statistical tests for randomness in a sequence
of numbers but we won’t bother with them here.

The operation of a computer is deterministic, so truly random numbers cannot be generated by a
computer program. However, sequences can be generated that appear to be random in that the
sequence passes some of the statistical tests for randomness. Such a sequence of numbers is
called pseudorandom.

Here is an algorithm for generating a sequence of pseudorandom numbers:

()mcxax ii ,mod 1 +⋅= −

m
x

z i
i =

where a, c and m are integers and mod() is the modulus function. The pseudorandom number
uniformly distributed in the interval (0,1) is zi.

In Fortran, this looks like the following:
 x = xo
 do i=1,100
 x1 = amod(a*x*c,em)
 z = x1/em
 x = x1
 print *,z
 end do
This process generates a sequence of numbers {zi} that have some properties of random
numbers, but in fact the sequence repeats itself—it’s periodic. The exact sequence depends on
the initial value, xo, called the seed. Usually, m is a large integer, commonly a power of 2. The
numbers c and m can have no common factor (c can be zero) while a is a multiple of a prime
factor of m + 1. The period of the sequence is m, which is why m needs to be large. For

instance, we might take 312=m , c = 0 and a = 16807.

b. Intervals
Suppose we want our pseudorandom numbers to lie in the interval (a,b) rather than (0,1). This is
easily done by scaling, or mapping onto the desired interval. Say 10 ≤≤ z , then

() azaby +⋅−= will lie in the interval (a,b).

c. Distributions
The example random number generator mentioned above produces numbers uniformly
distributed in (0,1). This means that is (0,1) were divided into equal subintervals, an equal

 51

number of random numbers is expected in each of those subintervals. The probability of the next
random number in the sequence falling in a particular subinterval is the same for all the
subintervals spanning (0,1).

It is possible to form sequences of pseudorandom numbers which obey some other distribution
function, such as Poisson or Gaussian, etc. We won’t get into that here.

2. Samples of Random Sampling

a. Coin toss
We have two outcomes for each toss, of equal probability. We’ll generate an integer, either 1 or
2, using a pseudorandom number generator.

zi = a uniformly distributed pseudorandom number in (0,1)
j = int(2*zi) + 1 = 1 or 2

We’ll say that if j = 1, it’s heads, if j = 2 it’s tails.

b. Roll of a die
In this case we have six outcomes, of equal probability (we hope). So we need to produce an
integer from 1 to 6.

j = int(6*zi)+1 = 1, 2, 3, 4, 5 or 6

Now, if it is known that the die is loaded, then we use a different scheme, creating subintervals in
(0,1) whose lengths reflect the relative probabilities of the faces of the die coming up. For
instance, we might say that

zi j
2.00 ≤< iz 1

34.02.0 ≤< iz 2

56.034.0 ≤< iz 3

72.056.0 ≤< iz 4

89.072.0 ≤< iz 5

189.0 << iz 6

3. Integration

Thinking again of the definite integral as an area under a curve, we envision a rectangle whose
area is equal to the total area under the curve f(x). The area of that equivalent rectangle is just
the length of the integration interval (a,b) times the average value of the integrand over that
interval. How to take that average? One way is to sample the integrand at randomly selected
points.

 52

a. One dimensional definite integrals

∫ ∑
=

≅
1

0 1

)(
1

)(
n

i
ixf

n
dxxf , where the {xi} form a pseudorandom sequence uniformly distributed in

(0,1). Over some other interval, ∑∫
=

−≅
n

i
i

b

a

xf
n

abdxxf
1

)(
1

)()(, where { } ()baxi ,∈ .

Since we are just averaging over a list of numbers, the error is O[
n

1
], just like the deviation of

the mean.

example: ∫
1

0

sin xdx

[] 1313.03904.0sin01335.0sin00075.0sin
3
1

sin
1

0

=++=∫ xdx

[] 2910.08776.0sin3904.0sin01335.0sin00075.0sin
4
1

sin
1

0

=+++=∫ xdx

[] 2524.00992.0sin8776.0sin3904.0sin01335.0sin00075.0sin
5
1

sin
1

0

=++++=∫ xdx

M

The exact result is 0.460.

b. Multi-dimension integrals
The random sampling approach is particularly useful with 2- and 3-dimensional integrals. The
other methods of numerical integration quickly become too messy to set up.

∫ ∫ ∫ ∑
=

≅
1

0

1

0

1

0 1

),,(
1

),,(
n

i
iii zyxf

n
dxdydzzyxf ,

where (xi,yi,zi) is an ordered triple, each member uniformly distributed on (0,1).

We may use three separate sequences of pseudorandom numbers or simply take numbers from
one sequence three at a time.

c. Alternate integration regions

i) ()()()∫ ∫ ∫ ∑
=

−−−≅
z

z

y

y

x

x

b

a

b

a

b

a

n

i
iiizzyyxx zyxf

n
abababdxdydzzyxf

1

),,(
1

),,(

ii) Suppose the integration region is not rectangular. Then an extra step is needed, to test for and
discard random points that fall outside the integration region.

e.g., a circle—discard points for which 122 >+ ii yx .

 53

Why do it this way; to ensure that the points are uniformly distributed in all directions. If points
are taken uniformly distributed in the radius, the points will be more widely spread the further
out from the center they lie, not uniformly spread over the area of the circle.

example: compute the volume of a sphere of radius R. In this situation, the integrand is 1.

3

0

2

0 0

2

3
4

sin RdrddV
R

πϕθθ
ππ

== ∫ ∫ ∫

Numerically,

()() ()() ()() () 3
3

1

8
2

1
1

2222

R
n
m

m
n
R

n
RRRRRRV

Rzyx

m

i
iii

==−−−−−−≅

≤++
=
∑ .

Notice this: the total number of random points generated is n. However, only m of those lie

within the spherical volume. The spherical volume we obtain is equal to
n
m

 times the volume of

a cube whose side is 2R. It’s interesting to see what this fraction is.

L52359.0
68

3
4

3

3

=== ππ

R

R

V

V

cube

sphere .

The ratio
n
m

 should approach this constant as we generate more points and include them in the

summation.

 54

Another way to look at this
n
m

 issue is to say that f(x) = 1 when 2222 Rzyx iii ≤++ and 0 when

2222 Rzyx iii >++ . Then there is no distinction between n and m, and the summation is a sum of
n – m zeros and m ones.

d. Example
Evaluate ∫∫

Ω

++ dxdyyx 1ln(sin , where Ω is the region

2
22

2
1

2
1

ryx ≤




 −





 − .

2
22

2
22

2
1

2
1
1

2

2
1

2
1
1

2

),(
1

4),(
1

2
1

2
1

1ln(sin

ryx

m

i
ii

ryx

m

i
ii

iiii

yxf
n

ryxf
n

rrdxdyyxI

≤





 −






 −

=

≤





 −






 −

=Ω
∑∑∫∫ =










 −−+≅++=

[If you want to try it, for r = 0.5, I = 0.57.]

This is equivalent to averaging the integrand over a circular area, thusly

2
22

2
1

2
1
1

2),(
1

1ln(sin

ryx

m

i
ii

ii

yxf
m

rdxdyyx

≤





 −






 −

=Ω
∑∫∫ ≅++ π .

Of course, often the shape of the region of integration isn’t a simple rectangle or circle.

 55

e. Fortran

 real*8 x,a,em,sum,ex,why,ax,ay,bx,by,r,r2
 f(x,y) = sin(log(x+y+1))

n = 100
 r = 0.5
 r2 = r*r
 x = 256.
 em = 2.0**31
 a = 16807.
 sum = 0.0
 ax = 0.5 – r
 ay = 0.5 – r
 bx = r + 0.5
 by = r + 0.5
 do 500 i=1,n
 x = amod(a*x,em)
 ex = x/em*(bx-ax) + ax
 why = x/em*(by-ay) + ay
 If((ex-0.5)*(ex-0.5)+(why-0.5)*(why-0.5) .gt. r2) goto 500
 sum = sum + f(ex,why)
 500 continue
 sum = sum*(by-ay)*(bx-ax)/n
 print *, sum
 stop
 end

 56

VII. Ordinary Differential Equations

A. Linear First Order Equations

We seek to solve the following equation for x(t):),(txf
dt
dx = . There are analytical methods of

solution: integration, separation of variables, infinite series, etc. In practice these may not be
convenient or even possible. In such cases we resort to a numerical solution. The x(t) takes the
form of a table of data pairs {ti,xi}, rather than a function.

1. One Step Methods

a. Taylor’s Series
Many numerical solutions derive from the Taylor’s series expansion

LL +−++−+−+=
p

o
pp

oooo
oo

dt

txd
p
tt

dt

txdtt
dt
tdx

tttxtx
)(

!
)()(

!2
)()(

)()()(
2

22

.

We are given),(txf
dt
dx = , so we could substitute this into the series thusly:

LL +−++−+−+=
−

−

1

12),(
!
)(),(

!2
)(

),()()()(
p

oo
pp

oooo
oooo

dt

txfd
p
tt

dt
txdftt

txftttxtx .

However, to obtain
dt
df

, 2

2

dt

fd
, 3

3

dt

fd
, etc., we have to use the chain rule.

dt
dx

x
f

t
f

dt
df

∂
∂+

∂
∂=







∂
∂+

∂
∂

∂
∂+∂+

∂∂
∂+

∂
∂=

x
f

f
x
f

x
f

dx

f
f

tx
f

f
t

f

dt

fd
2

2
2

2

2

2

2

2

2

It’s easy to see that this gets very messy rather quickly.

b. Euler’s Method
Let’s keep just the first two terms of the Taylor’s series: ooooo Ttxftttxtx +−+=),()()()(,
where the To is the sum of all the terms we’re dropping—call it the truncation error. In what
follows, we will have to distinguish between the correct or exact solution, x(t), and our
approximate solution, xi. We hope)(ii txx ≅ .

With the Euler Method, our algorithm is [given to, x(to) = xo and f(x,t)]

),()(11 oooo txfttxx −+=

),()(111212 txfttxx −+=
M

),()(11 iiiiii txfttxx −+= ++

M

 57

example: t
dt
dx

13= , with to = 0 and xo = 4 and 5.0)(1 ==−+ htt ii .

The algorithm is: ()iiiii tttxx 13)(11 −+= ++ .

The first few steps in the numerical solution are shown in the following table.

i t x
0 0 4
1 .5 4
2 1 7.25
3 1.5 13.75
4 2 23.5
M M M

2. Error

a. Truncation error

11),(++ ++= iiiii Ttxhfxx
Not only do we not know what the exact solution is, we don’t know how far the numerical
solution deviates from the exact solution. In the case of a truncated Taylor’s series, we can
estimate the truncation error by evaluating the first term that is dropped. For Euler’s formula,
that’s the third term of the series.

)(
2

)(
2

22

1 i
i

i xf
h

dt
xdfh

T ′=≈+

Here’s a graph of both the exact (but unknown) and the numerical solutions.

The deviation from the exact x(t) may tend to increase as the total truncation error accumulates
from step to step, the further we get from the initial values (to,xo). The lesson is—make h small.

 58

b. Round-off error
Since the values are stored in finite precision, round-off error accumulates from step to step also.
Therefore, in traversing an interval bto ≤≤ , we’d like to have as few steps as possible. In other
words, we want h to be large. Consequently, the two sources of error put competing pressure on
our choice of step size, h. If we have some knowledge of x(t), we may be able to achieve a
balance between large and small step size. Otherwise, it’s trial and error.

c. Higher order methods
The many numerical algorithms that have been developed over the years for solving differential
equation seek to reduce the effect of truncation error by using more terms from the Taylor’s
series, or in some way correcting for the truncation error at each step. In that way, fewer, larger
steps can be used.

 59

B. Second Order Ordinary Differential Equations

),,(),,(
2

2

xxtf
dt
dx

xtfx
dt

xd ′==′′= , with initial conditions oxx =)0(and ovx =′)0(.

1. Reduction to a System of First Order Equations

a. New Variables
We start by introducing new variable names: tz =1 ; xz =2 ; xz ′=3 ; xz ′′=4 . The first three
variables are the solutions to the following differential equations:

11 =′z

32 zxz =′=′

43 zxz =′′=′
These form a set of three simultaneous first order differential equations,

11 =′z

32 zz =′

),,(32143 zzzfzz ==′

with the initial conditions 0)0(1 =z , oxz =)0(2 and ovz =)0(3 respectively.

b. Solution
Any method, such as Euler’s, may now be applied to each first order equation in turn. Thusly:

1,11,1 ⋅+=+ hzz ii

iii zhzz ,3,21,2 ⋅+=+

iii fhzz ⋅+=+ ,31,3 .
The Fortran code might look like this:
 z(1) = 0.0
 z(2) = xo
 z(3) = vo
 h = 0.01
 do 100 i=1,100
 z(1) = z(1) + h
 z(2) = z(2) +h*z(3)
 z(3) = z(3) + h*f(z(1),z(2),z(3))
 write(5,1000) z(1),z(2),z(3)

1000 format(1x,3e15.5)
 100 continue

c. Example

)cos(9 txx ⋅+−′−=′′ ω

oxx =)0(, ovx =′)0(

 60

In this case,)cos(9),,(txxxtf ⋅+−′−=′ ω , so the algorithm looks like

1,11,1 ⋅+=+ hzz ii

iii zhzz ,3,21,2 ⋅+=+

[])cos(,1,3,31,3 iiii zgzhzz ⋅+−−⋅+=+ ω .

2. Difference Equations

An alternative approach to second order ordinary differential equations is to replace the
derivatives with finite differences. The differential equation is replaced by a difference equation.

a. Difference equation
Using forward divided differences, we obtain

h
xx

dt
dx

x ii −
≅=′ +1 and

2
1111

2

2 21
h

xxx

h

xx

h

xx

hdt
xd

x iiiiiii −+−+ +−
=





 −

−
−

≅=′′ .

Let’s say that we have the second order differential equation
dctbxxax +++′=′′ .

The corresponding difference equation is

dctbx
h

xx
a

h

xxx
ii

iiiii +++




 −

=
+− +−+ 1

2
11 2

.

The next step is to solve for the “latest” x.
222

111 2 dhtchxbhahxahxxxx iiiiiii +++−=+− +−+

() () 22
1

2
1 21 dhtchxxbhahxah iiii ++−+−=− −+

()[]22
1

2
1 2

1
1

dhtchxxbhah
ah

x iiii ++−+−
−

= −+

The initial conditions are applied by setting to = 0, x0 = xo and hvxx oo −=−1 .

b. Examples
 i) gx −=′′
 Here, 0=== cba and d = -g.
 2

11 2 ghxxx iii −−= −+

 ii) gxx −′−=′′
 This time, a = -1, b = 0, c = 0 and d = -g.

()[]2
11 2

1
1

ghxxh
h

x iii −−+
+

= −+

c. Discretization error
Replacing continuous derivatives with finite differences introduces what is known as
discretization error. Implicitly, we are assuming a straight line between xi and xi+1 and between

ix′ and 1+′ix as well. There will always be some)(11 ++ −=∆ ii txx at each step which will then
accumulate over the sequence of steps in the numerical solution.

