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I.
Introduction

We observe the motion of objects in the universe around us, and we experience the passage of time.  Those objects move in three dimensions of space.  Mathematically, we can treat time as a fourth dimension, or axis, giving rise to the term space-time.  We observe further that sometimes an object’s motion changes.  We want to understand how an object’s motion changes, meaning what causes the change in motion.
A.
Dimensions and Units of Measure

1.
Physical Dimensions

The dimension of a physical quantity specifies what sort of quantity it is—space, time, energy, etc.

a.
Fundamental dimensions

We find that the dimensions of all physical quantities can be expressed as combinations of a few fundamental dimensions:  length [L], mass [M], time [T], and electric charge [Q].

For example, energy 
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b.
Operational definition

Ultimately, the fundamental physical dimensions are defined operationally.  That is, we prescribe how the physical quantity is to be measured.  The length of an object is defined thusly:  (i) lay a meter stick next to the object, (ii) count the marks on the meter stick between the two ends of the object, (iii) that number is the length of the object.

2.
Systems of Standard Units

In the example of an operational definition of length, we used a meter stick.  Of course, this refers to one of the widely accepted units of length, the meter.  To facilitate communication, we all agree to express our measurements in terms of a standard set of units of measure.  A complete set of units would include a standard unit for every physical dimension.

a.
International system (SI)

The units of the fundamental dimensions in the SI are

	dimension
	SI
	cgs
	Brit

	[L]
	meter
	centimeter
	foot

	[T]
	second
	second
	second

	[M]
	kilogram
	gram
	slug


These fundamental units are defined operationally.  The meter is defined as the distance that light travels in a vacuum in 
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 of a second.  In turn, a second is defined to be equal to the time required for 9192631770 cycles of microwaves whose frequency is just right to excite a particular atomic transition in Cesium.  The kilogram is still based on an actual prototype, a chunk of platinum-iridium alloy kept hermetically sealed in France.  The SI units of other physical dimensions will be introduced as we go along.  They almost all are named after a person.

b.
Unit conversions

Now, the amount of a physical quantity remains the same, no matter what system of units is used to obtain a numerical measure of that quantity.  For instance, we might measure the length of an (American) football field with a meter stick and a yard stick.  We’d get two different numerical values, but obviously there is one field with one length.  We’d say that 
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Suppose we wish to convert 2 miles into meters.  [2 miles = 3520 yards.]
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The units cancel or multiply just like common numerical factors.  Since we wanted to cancel the yards in the numerator, the conversion factor was written with the yards in its denominator.

Since each conversion factor equals 1, we can do as many conversions as we please—the physical measurement is unchanged, though the numerical value is changed.

c.
Abbreviations

The names of the standard units also have standard abbreviations.  The abbreviation for meter is m, for second s or sec, for kilogram kg.  So each time a new unit is introduced, so will be its standard abbreviation.

d.
Dimensional analysis

We can check for error in an equation or expression by checking the dimensions.  Quantities on the opposite sides of an equal sign must have the same dimensions.  Quantities of different dimensions can be multiplied but not added together.

e.g., a proposed equation of motion, relating distance traveled (x) to the acceleration (a) and elapsed time (t).
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Dimensionally, this looks like
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At least, the equation is dimensionally correct; it may still be wrong on other grounds, of course.

B.
Scientific Notation and Significant Figures

Scientific notation is simply a way of writing very large or very small numbers in a compact way.
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1.
Significant Figures (Digits)

Instruments cannot perform measurements to arbitrary precision.  A meter stick commonly has markings 1 millimeter (mm) apart, so distances shorter than that cannot be measured accurately with a meter stick.  We report only significant digits—those whose values we feel sure are accurately measured.  There are two basic rules:  (i) the last significant digit is the first uncertain digit and (ii) when combining numbers, the result has no more significant digits than the least precise of the original numbers.

A third rule is, the exercises and problems in the textbook assume there are 3 significant digits.  Therefore, we never include more than 3 significant digits in our numerical results, no matter that the calculator displays 8 or 10 or more.

2.
Scientific Notation and Significant Digits

The uncertainty in a numerical value may be expressed in terms of a tolerance, as 
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.  Alternatively, the uncertainty can be shown in scientific notation simply by the number of digits displayed in the mantissa.
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   2 digits
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   2 digits

C.
Vectors

Mathematics is a system of logic that we use to discuss physical phenomena.  A system of logic consists of entities and of a list of rules that govern how the entities relate to one another.  A general term for this is group theory.  Of course, this is a very general definition.  In physics, entities or concepts are represented mathematically by the mathematical objects scalars, vectors and sometimes matrices.  These mathematical objects are defined by the rules that govern them.  

A particular physical quantity, such as velocity, may be represented by a mathematical vector.  We often say then that velocity is a vector quantity.  In the same vein, temperature is a scalar quantity.  

1.
Coordinate System

We measure locations in space relative to a coordinate system.  Firstly we select the origin of coordinates, and then the directions of orthogonal axes.  The choice of coordinate system is entirely at our convenience.  However, like a consistent choice of units, we need to be consistent with our coordinate system.  Since the directions shown by orthogonal axes are mutually perpendicular, components along different axes are independent of each other.

a.
Cartesian
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b.
Polar
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c.
Three Dimensional

[image: image592.png]


The three dimensional Cartesian coordinate system is comprised of three mutually perpendicular, straight axes, commonly denoted x, y, & z.

The spherical polar coordinate system is comprised of a radius and two angles, as shown in the figure.  Notice how the polar coordinates are defined in terms of the Cartesian system.

Any point in space can be uniquely specified by listing three numerical coordinates.  

2.
Definition of Scalars & Vectors

a.
Scalar

A scalar is a mathematical entity that has one property, magnitude, only.  Temperature, mass, speed, and energy are scalar quantities.  Scalars obey the familiar rules of addition, multiplication, etc.
b.
Vector

A vector is a mathematical entity that possesses two properties, which physically we call magnitude and direction.  Displacement, velocity, acceleration, force, and momentum are vector quantities.

Vectors are symbolized graphically as arrows, in text by bold-face type or with a line/arrow on top.  A vector may also be represented by an ordered list of numbers, which are called the components:  [t,x,y,z].  Written this way, mathematically the vector would be called a row matrix.  A column matrix is a vertical list of components:  
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Superscripts and subscripts and implied summation. . . . . . . .
c.
Unit vectors

A unit vector is a vector of magnitude 1.  E.g., 
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 is the magnitude of the vector 
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d.
Components
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The directions defined by the Cartensian coordinate axes are symbolized by unit vectors, 
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e.
Adding vectors

The sum of two vectors is also a vector.
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Graphical method:

Vectors are represented by arrows, drawn to scale.  Place the tail of the 2nd vector on the head of the 1st, preserving the relative orientations.  The resultant vector extends from the tail of the 1st to the head of the 2nd vector.
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Component method

Decompose both vectors along the same set of coordinate axes.  The components are scalars, and so can be added in the usual way of scalars.
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f.
Multiplying vectors

scalar (or dot) product—result is a scalar; the operation is symbolized by a dot.
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The angle 
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 is the angle from 
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As a matrix multiplication, 
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.  The magnitude squared of a vector, 
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Vector (or cross) product—result is a another vector; the operation is symbolized by a cross, 
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Since the result is a vector, it has magnitude and direction.  The rule for evaluating a cross product is as follows:


[image: image40.wmf]q

sin

AB

C

C

=

=

r

, direction perpendicular to both 
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 according to the right-hand-rule.

Alternatively, the cross product can be evaluated by use of a determinant, thusly:
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Note:  This must be done in Cartesian coordinates.

Evidently, 
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g.
Multiplication of a vector by a scalar

A vector may be multiplied by a scalar.  This affects the magnitude of the vector, but does not affect its direction.  The exception to this rule is multiplication by –1.  That leaves the magnitude unchanged, but reverses the direction.
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II.
Kinematics

Kinematics refers simply to the description of motion.  We will be studying the mathematical representation of the motion of a point mass.  A point mass is an idealized object having no extent, nor volume, nor internal structure.

A.
One Dimensional Motion

The motion is constrained to lie along a single straight line:  back & forth, up & down, left & right, etc.  The coordinate system consists of a single line, with components on either side of an origin.

1.
Variables of Motion

We describe the motion of a particle with four motion variables:  time, displacement, velocity, and acceleration.  We will be looking for a mathematical means of describing the relationships among these variables—an equation of motion.

a.
Displacement

The displacement vector, 
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If a particle is at 
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b.
Velocity

The average velocity during the time interval 
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 is defined to be 
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.  It’s the time-rate-of-change in the displacement.  In terms of vector components, we’d write 
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The instantaneous velocity is defined to be 
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c.
Acceleration

Similarly, the average acceleration is 
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The instantaneous acceleration is 
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d.
Motion graphs
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2.
Motion with Constant Acceleration

a.
An Equation of Motion

To be specific, let’s say that the motion is along the x-axis.  Then we will deal with x-components only.  To develop equations of motion, we begin with the definition of acceleration.
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We might solve for 
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If we say that 
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Or we might begin with the definition of velocity. . .
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But because the acceleration is assumed to be constant, the average velocity can be written also as 
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Next, we might substitute for the velocity component. . .
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Finally, we could eliminate 
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 from the equations by solving the definition of the acceleration for 
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We have four possible equations, each involving three of the motion variables.  They are valid in cases of constant acceleration only.

Example:  a train traveling on a straight and level track

[image: image78.png]7 X
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We might compute the total displacement from time t = 0 until the train comes to rest, given that the train starts also from rest.  Firstly, we set up the coordinate system, in this case just the x-axis.

We have three different accelerations, so we find the displacement for each segment.  

Segment 1:  We are given the acceleration, elapsed time and initial velocity—vxo = 0 m/s.  So we choose the equation of motion 
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Segment 2:  To find the displacement during the second segment, we need the velocity component at the end of the first.
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Then, 
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And, of course 
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Segment 3:  For this segment, we know x2, vx2, vx3, and ax, but not 
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b.
Vertical motion in a uniform gravity field

A freely falling object is one on which only the gravitational force is acting.  Such an object experiences an acceleration toward the center of the Earth.  The magnitude of the acceleration due to gravity varies slightly from place to place, and with altitude.  However, we will use the average magnitude g = 9.81 m/s2 and pretend the acceleration is constant and uniform.

Example:  A hot air balloon is rising at a constant speed of 5 m/s.  At time zero, the balloon is at a height of 20 m above the ground and the passenger in the balloon drops a sandbag, which falls freely straight downward.  

What are the height of the sandbag and its velocity as functions of time?  How long does it take for the sandbag to reach the ground?

Firstly, set up the coordinate system and draw a picture.
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Secondly, select the appropriate equations.
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	10.4
	-14.6
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We could answer the second question numerically, by continuing the table until 
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.  That’s perfectly legitimate.  However, in this case we have an exact expression for the magnitude of the velocity at y = 0 m.
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Notice that we had to decide, based on our physical intuition, what algebraic sign to attach to the velocity component.  Finally, we use this final velocity to solve for the elapsed time.
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Now, there is an alternative, one-step solution.


[image: image94.wmf](

)

(

)

(

)

(

)

 s

-

 

or

 

 s

 s

m/s

 

m

 

m/s

 

s

m

 

m/s

 

t

t

m/s

 

t

m/s

 

m

 

m

 

t

a

t

v

y

y

2

2

2

y

yo

o

57

.

1

59

.

2

8

.

9

42

.

20

5

8

.

9

20

9

.

4

4

/

25

5

8

.

9

2

1

5

20

0

2

1

2

2

2

=

±

=

-

-

±

-

-

=

×

-

+

×

+

=

×

+

×

+

=


We cannot have a negative elapsed time, physically, so we ignore the negative root.

B.
Two Dimensional Motion

The general approach is to decompose the vector equations of motion into component equations.  We obtain thereby a system of simultaneous equations to solve for the motion along the coordinate axes.

1.
Projectile motion

The motion of a freely falling body in two or three dimensions is often called projectile motion.

a.
Set up

At any instant, the projectile has displacement 
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, velocity 
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, and constant acceleration 
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.  Using the coordinate system shown in the figure, we’ll have 
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.  We are assuming that the projectile is initially at the origin of coordinates, and that there is no other force, such as air resistance, acting.
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The equation for the velocity vector is
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Decompose
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The components of the initial velocity are 
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The equation for the displacement vector is
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b.
Example
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i) The maximum height occurs when 
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.  So we choose the equation involving y, vy, and ay, and solve for y.
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ii) The elapsed time to reach that maximum height is
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iii) We might ask, at what time(s) is the projectile at a specified height, say y = 25 m?


[image: image110.wmf](

)

(

)

 s

 

and

 

 s

2

 s

 s

 s

t

 s

 s

t

 s

t

a

y

y

t

a

v

t

y

y

t

v

t

a

t

a

t

v

y

y

2

2

2

y

o

y

yo

o

yo

y

y

yo

o

61

.

5

910

.

0

1

.

5

4

)

52

.

6

(

)

52

.

6

(

0

10

.

5

52

.

6

0

2

2

0

2

1

2

1

2

2

2

2

2

=

×

-

±

-

-

=

=

+

×

-

=

-

+

+

=

-

+

+

+

+

=


The significance of the two roots is that the projectile achieves the height of 25 m on the way up and on the way down.

iv) The velocity components at t = 0.910 s and at t = 5.61 s.
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	time (s)
	velocity (m/s)

	0.910
	
[image: image112.wmf]0

.

23

1

.

24

=

=

y

x

v

v



	5.61
	
[image: image113.wmf]0

.

23

1

.

24

-

=

=

y

x

v

v




c.
Example
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2.
Uniform circular motion

a.
Curvilinear motion

Envision an object having, at the moment, a velocity 
[image: image116.wmf]v

r

, subject to an acceleration, 
[image: image117.wmf]a

r

.  We might decompose the acceleration into components parallel to and perpendicular to the velocity vector.  The parallel acceleration component affects the speed of the object, while the perpendicular component affects the direction of the velocity vector, but does not change its magnitude.
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b.
Circular motion

Uniform circular motion refers to motion on a circular path at constant speed.  While the magnitude of the velocity is constant, the velocity vector is not constant.  The same is true of the acceleration vector—its magnitude is constant but its direction is not.  However, the acceleration is always directed toward the center of the circular path.  The component of acceleration parallel to the velocity vector is zero.  The acceleration component directed toward the center of the circle is called the centripetal acceleration.

What acceleration is necessary to cause uniform circular motion?  Let the origin be at the center of the circle, as shown.
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Consider two successive displacement and velocity vectors.
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By the definition of uniform circular motion, 
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Representing these differences graphically, we can see by similar triangles that 
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The magnitude of the centripetal acceleration always 
[image: image130.wmf]r
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The centripetal acceleration is the perpendicular acceleration component for an object executing curvilinear motion since we can suppose the object is following a circular arc at any time, but perhaps with inconstant radius of curvature.
III.
Dynamics

A.
Newton’s “Laws” of Motion

In effect, Newton’s “Laws” define force and give two of the attributes of matter.

1.
First “Law”

“An object in uniform motion remains in uniform motion unless it is acted upon by an external force.”

In this context, uniform motion means moving with constant velocity.

a.
Force

In other words, if the velocity of an object is changing (whether magnitude, direction, or both), then a force is acting on the object.  A force is an external influence that changes the motion of an object, or of a system of objects.

We find that there are four fundamental forces in nature, gravity, electromagnetic force, and the strong and weak nuclear forces.  All other types of forces that we might give a name to are some manifestation of one of the fundamental forces.

Force is a vector quantity having magnitude and direction.  The dimensions of force are:
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The SI unit of force is the Newton (N); the common British unit is the pound (lb).

Note that for historical reasons, the gravitational force may be called the weight.

b.
Inertia & mass

Two of the attributes of matter are i) resists changes in its motion—matter has inertia, and ii) a force acts between any two pieces of matter—material objects or particles exert forces on each other.  

The quantitative measure of inertia is called the inertial mass of a particle.  The SI unit of mass is the kilogram (kg).  The inertial mass of a particle is measured by observing the acceleration that results from a known applied force.  It is observed that if the same force is applied to two objects, then 
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.  So, we see that inertial mass is a relative thing—we have to pick some object to define to be 1 kg, and compare all other objects with that standard.

2.
Second “Law”

The Second “Law” makes quantitative the relation between applied force and the resulting change in motion.

a.
Statement

“The change in motion of an object is directly proportional to the net external force.”

Symbolically, 
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If the mass of the object is unchanging, then 
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This is the famous eff equals em ay.

Note that the acceleration results from the vector sum of all forces acting on the object.

b.
Momentum

The quantity 
[image: image135.wmf]v

m

r

 is called the momentum.  Like velocity, momentum is a vector quantity.

c.
Equilibrium

Should the vector sum of all forces acting on an object be equal to zero, then 
[image: image136.wmf]0

=

dt

p

d

r

 and the object is said to be in static (
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) or dynamic (
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) equilibrium.  

d.
Free body diagram(s)

To help us avoid confusion when identifying all the forces acting on an object or particle, we draw what are called free body diagrams.  A free body diagram is a sketch of the object only, with arrows indicating each force acting only on that object.  For instance, here’s a block resting on an inclined surface.  We sketch the incline and the block, showing coordinate axes and the angle of incline and whatever might be given, such as initial velocities, etc.  Then, to one side, we draw a second sketch, which includes the block only, as if it were isolated.
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3.
Third “Law”

“For every action, there is an equal and opposite reaction.”  

In the old days, the word action was used in the sense that we now use the word force.

a.
Action & reaction

Force is an interaction between two material objects.  There is a gravitational interaction between the Earth and the Moon.  They exert forces on each other of equal magnitudes but opposite directions. 

b.
Example(s)

i) Consider a block resting on a table.  The forces acting on the block are its weight, 
[image: image140.wmf]W

r

, and the contact force, 
[image: image141.wmf]N

r

, exerted by the table on the block.  In turn, the block exerts a contact force, 
[image: image142.wmf]N
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, on the table.  A contact force is the force one object exerts on another by virtue of being in contact with that second object, i.e., touching.  It is the force with which two objects are pressing together.  In fact, on the microscopic scale, two objects are not really “touching” each other.  
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 form an action-reaction pair, because they are acting on different objects.  We would never add 
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 together.  On the other hand, 
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 are both acting on the block.  We add them to obtain the net force on the block.  

The reason this is confusing is that 
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ii) Consider a block being dragged along a frictionless surface.
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Decompose the forces acting on the block.

x:  
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y:  
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Notice that in this case, the reaction of the block on the surface is 
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B.
Case Studies

1.
Weight & Friction & Tension

a.
Weight & scales

Weight is the term we use to refer to the force of gravity near the Earth’s surface, or near a planetary body’s surface, or near a moon’s surface, etc.  In such a situation, the magnitude of the weight is 
[image: image159.wmf]mg
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, and it’s directed downward.
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We do not measure weight of an object directly.  Instead, we place the object on a scale.  The number we read off of the scale is actually the contact force exerted upward by the scale on the object.  If the object is in equilibrium, then we infer that the weight has the same magnitude.  
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b.
Friction

When two objects slide against one another, there is a resistive force, called friction.  On the microscopic scale, it arises from the electromagnetic forces that act between molecules and atoms.

Macroscopically, we observe that the frictional force 
[image: image162.wmf]f
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 is different if there is relative motion between the two objects, or the two surfaces.  If there is no relative motion, then we have static friction, 
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, where N is the contact, or normal, force and 
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 is the coefficient of static friction.  If there is relative motion, then we have dynamic or kinetic friction, 
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, where 
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 is the coefficient of kinetic friction.

In either case, the direction of the frictional force is opposite to the motion (kinetic) or opposite to the pending motion (static).  Its direction is always tangent to the surfaces at the point or area of contact.

The value of the coefficient of friction depends on the nature of the two surfaces at which the friction is acting.  See the table in the textbook.  Notice that the static friction does not have a single value, but can be any value from zero (if N = 0) up to some maximum, at which point the objects start to slide, and the friction becomes kinetic friction.  Notice, too, that 
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 in every case.

i) 

[image: image168.png]\

J,

N




Decompose the forces acting on the block.

x:  
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Let’s say F is given, then there are two unknowns, N and ax.  Fortunately, we have two equations.  We can solve the y-equation for N and substitute that into the x-equation.
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ii)  Now suppose a second block is resting atop the block which is resting on the floor.
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It is important to see that the applied force 
[image: image173.wmf]F

 is acting only on the lower block (m), and not on the upper block (M).  Let’s call the blocks 1 (upper) and 2 (lower).  A free body diagram of block 1 might look like this:
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On the other hand, a free body diagram of block 2 will look like this.  (The block 1 is still present to show the origin of the contact force between the blocks).  
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 is the contact force exerted on block 1 by block 2.  So, the contact force exerted by block 1 on block 2 is 
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.  The floor exerts a contact force on block 2, 
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, but not on block 1, ‘cause block 1 is not touching the floor!  

There are frictional forces between the blocks, and between block 2 and the floor, but they are not the same.
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We apply Newton’s 2nd “Law” to each of the blocks. (Notice the action-reaction pairs.)

Block 1


x:  
[image: image179.wmf]x

f

x

x

f

x

x

Ma

F

Ma

F

W

N

1

1

1

1

1

1

0

0

=

+

+

Þ

=

+

+



y:  
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Block 2


x:  
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The frictional forces would be found by setting 
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.  The coefficients of friction are 
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We see, for instance, that 
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c.
Tension

Tension is a force that tends to pull apart.  In our common introductory examples, we consider a cord or rope, but more generally any material object, such as a rod or beam or wooden board can be subject to tension.

The ideal cord is massless, non-stretchable and perfectly flexible.  This means that it can sustain tension, but cannot resist compression along its length.  It means also that the tension in the cord is the same throughout its entire length.  

i)  a mass hanging at rest from a cord
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Decompose (we have only the vertical direction, anyhow.)
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ii)  a mass hanging from two cords
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Again, we only have one dimension.  But, we have two objects—the hanging mass, m, and the pulley, M.  As before, 
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.  For the pulley,
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We have made use of the fact that the tension is the same T2 on either side of the pulley.

iii)  a rope stretched across a chasm 
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The forces on the hanging mass are
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2.
Circular Motion

Earlier, we described uniform circular motion, defining the centripetal acceleration, etc.  Now, we examine how applied forces produce circular motion.  We saw that for circular motion, the radial acceleration had to be equal to 
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.  That is the a in the F = ma!  Any number of forces may cause the centripetal acceleration.

a.
Ferris wheel

Imagine one of the cars on a vertical Ferris wheel.  Consider the forces acting on the car at some arbitrary position on the circle.  The velocity vector is always tangential to the circle, but may not be of constant magnitude.
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A free body diagram for the car--
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Rather than x- and y-components, we have radial and tangential components.

Radial component:  
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Tangential component:  
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At the highest (
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) and lowest (
[image: image207.wmf]o

0

=

q

) points, we have special cases.  In those cases, the tension is entirely radial because there is no tangential component of the weight.
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We might be given v, r, and m and be asked to find the Tr.

b.
Banked curve

Consider an automobile driving around a banked curve.  In cross section, it looks like an object on an inclined plane.  Viewed from above, it’s an object traveling on a circular arc, perhaps with constant speed.
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In connection with potential sliding up or down the incline, the friction is static friction if the car is not sliding.  Decompose:
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Make the substitution for N in the x-component equation:
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Now, for instance, say 
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; what must the angle 
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 be if the car is not to slide?  We are looking for the limiting case.  Notice that the mass of the car appears on both sides of the equation, so it will divide out.
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c.
Merry-go-round, or Orbit

Consider a satellite moving around the Earth in a circular orbit at constant speed.  According to Newton’s “Law” of Gravitation, the Earth exerts a force on the satellite equal in magnitude to 
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, where G is the universal gravitational constant, M is the mass of the Earth, m is the mass of the satellite, and r is the distance between the satellite and the center of the Earth.  In Newton’s Second “Law”
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Notice that the mass of the satellite divides out!  We might solve for v in terms of the orbit radius, r.
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The larger the orbit, the slower the satellite moves.

3.
Sliding & Pulling

a.
Inclined plane

Consider an object, such as a box or trunk, resting or sliding on an inclined plane surface.  That is, the surface is straight and flat, but inclined at an angle to the horizontal.
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We apply Newton’s 2nd “Law” to the mass, m.
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It is convenient to orient the coordinate axes parallel and perpendicular to the inclined surface, because we expect the mass to slide along that incline.
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What are the components of the weight this time?  
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The components of the weight vector form a triangle similar to the triangle formed by the inclined surface.

What if there is friction?  What if there is an additional applied force?
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We apply Newton’s 2nd “Law” to the mass, m.
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It is convenient to orient the coordinate axes parallel and perpendicular to the inclined surface, because we expect the mass to slide along that incline.

Decompose
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Had there been friction, the 
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 would have been parallel to the inclined surface, and we would use the y-component equation to find 
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b.
Pulleys & cords

Imagine an object hanging from an ideal cord that is wound around a set of two pulleys.  We assume the cord is perfectly flexible and does not stretch, and has no mass of its own.  This means that the tension within the cord is the same along its entire length.
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Newton’s 2nd “Law” applies to each object.  We’ll just need vertical components, so for the pulley 
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.  For the hanging mass, 
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.  In other words, we find that we need to pull on the cord with a force (T2) of only half the hanging weight (W) to support it.  That’s why we have pulleys.  They provide mechanical advantage, similarly to the use of a lever.
4.
Restoring Forces

a.
Spring

If a spring is stretched by an external force, the spring exerts a force in the opposite direction tending to restore it to its original length.  For instance, when a mass is hung on a spring, the spring is stretched by the weight of the mass.  The spring exerts a force upward on the mass.  On the other hand, when an external force compresses a spring (shortens its length), the spring pushes back.
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A linear restoring force is such that 
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.  This is the magnitude; the direction is always such as to restore the spring to its resting length, the length of the spring when no external force is acting on it.  The proportionality constant, k, is called the force constant.

Applying Newton’s 2nd “Law” to the figure above, with the hanging mass in equilibrium,
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Notice that we have taken the +x direction to be in the direction of increasing spring-length.  So, x is positive downward in this case.  Often we find it convenient to place the origin at the end of the unstretched spring.  Therefore, xo = 0.

b.
Pendulum

[image: image237.png]



If a mass hung on a light cord is pulled to one side, and released, it will tend to swing back toward its starting point.  One way to analyze the pendulum is to regard it as a case of circular motion.  We have radial and tangential components:
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radial:  
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tangential:  
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5.
More than One Object

a.
Inclined plane and pulley

[image: image241.png]



We will ignore the mass of the pulley, and also assume that the pulley has no friction.  The inclined surface also is frictionless.  There are two bodies in the system, and we draw free-body diagrams of each of them.
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Notice that a + direction of motion is indicated on the sketch.  We are allowed to use different coordinate axes for the two bodies, for our own convenience, as long as we remain consistent with the (+/-) directions.

For m1, there is only vertical motion.
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For m2, there are x- and y-components.
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x:  
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What we appear to have is 3 unknowns and 2 equations:  T, a1, and a2x.  However, because the two masses are connected by a non-stretchable cord, 
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!  So, we can solve for T and for a1.
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b.
Atwood’s machine

Consider two masses hung over a massless, frictionless pulley by an ideal cord.
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Once again we have two objects, with a free-body diagram for each object.  
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Newton’s 2nd “Law” applies to each object.

m1:  
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m2:  
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Notice the + direction is defined to be clockwise around the pulley.  Too, since the pulley has no mass nor friction, and the cord is ideal, 
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2 unknowns & 2 equations. . . .
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C.
Relative Motion

Query:  To what extent does it matter, physically, where we stand while we observe the motion of an object?

1.
Reference Frames

We always measure the position and velocity and acceleration vectors relative to a convenient coordinate system—an origin and coordinate axes.  The coordinate system is called a reference frame.

a.
Position vectors

Consider a point in space.  Its position is the vector that runs from the origin to the point.  
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The two position vectors, 
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, point to the same point, yet they have different magnitudes and directions.  The origin of the “primed” reference frame is a point in space, too, and has a position vector, 
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Notice that the relative velocity is measured in the “unprimed” frame of reference.  Further, we’ll label the reference frames as the S-frame and S’-frame rather than spell out the words “primed” and “unprimed”.

b.
Relative velocities 

The time rate of change in position is the velocity.
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At this point we’ll assume that 
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These three equations together constitute the Galilean Transformation of coordinates.  
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Here’s an example.  Let the S-frame be fixed to the Earth’s surface while an S’-frame is pained on the wall inside the cabin of a jet liner flying overhead.  We’d say that the S’-frame is moving with velocity 
[image: image273.wmf]u

 with respect to the S-frame.  Now, as shown in the sketch, we choose the coordinate axes, both sets, to make things as simple as possible.  For instance, the orientations of the two frames are the same.  We often imagine that the two origin coincide at time t = 0.  We get a simplified sketch of the situation.  Keep in mind that whatever object is located at the point P is not attached to either coordinate system.  It moves through space, and we are observing that motion from one reference frame or another.
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2.
Accelerated Reference Frames

a.
Inertial reference frame

An inertial reference frame is one in which Newton’s “Laws” of motion are valid—observed accelerations result from observable physical forces, such as a spring, or gravity, or tension in a cord, etc.

b.
Accelerated reference frame
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Non-inertial reference frames are accelerated reference frames.  That is, 
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i)  Consider a railroad boxcar.  Inside, from the ceiling, hangs ball of mass, m, on a cord.  Imagine two observers, one standing outside the boxcar and the other standing inside the boxcar.  Both apply Newton’s 2nd “law” to the hanging mass.

As seen by the observer inside the car:
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Decompose

x’:  
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Now here’s the thing.  We normally think that the direction that an object hangs on a cord defines the vertical.  The gravitational force is presumed opposite in direction to the tension.

As seen by the observer outside the boxcar:
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Now we bring the two views together by noting that 
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The two observers interpret the weight differently—different in magnitude and in direction.
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c.
On the rotating Earth

Consider a plumb bob hanging at rest, and let the origin of our coordinate system be at the bob, so 
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.  The “real” physical forces on the bob are gravity and the tension in the cord.  We have also 
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As seen in the rotating frame:  
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 does not point toward the center of the Earth.  As seen in an inertial frame, Newton’s 2nd “Law” appears as  
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 is the centripetal acceleration, directed toward the Earth’s rotational axis.  Now, 
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.  The deviation from the true vertical (pointing toward the center of the Earth), is a function of the latitude, 
[image: image300.wmf]l

, since 

[image: image597.png]T¢>





[image: image301.wmf]g

a

e

o

¢

=

l

sin

sin



[image: image302.wmf]g

e

¢

=

l

rw

sin

sin

2



[image: image303.wmf]g

R

e

¢

=

l

lw

sin

cos

sin

2



[image: image304.wmf])

2

sin(

2

sin

2

l

w

g

R

e

¢

=


Our scales actually measure 
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.  However, since the Earth rotates slowly, 
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.  The same would not be true on a planet that rotates much faster than the Earth.  See for instance the science fiction novel A Mission of Gravity by Hal Clement.

IV.
Work and Energy and Impulse and Momentum

A.
Physical Work

In Physics and engineering, the word work has a specific definition.  It’s basically equal to a force times the displacement that occurs while the force is acting.

1.
Definition of Physical Work

a.
Path integral
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Imagine a particle moving along a curved path through space.  As it moves, an external force acts on the particle.  The vector 
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 is an infinitesimal displacement along the path—it’s always tangent to the path.
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Work has dimensions of 
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.  The SI unit of work is the Joule (J).  
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.  The British unit of energy is the foot-pound (ft-lb).  The British Thermal Unit (BTU) is also used.  Since the scalar product is involved, the result is a scalar.
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b.
One dimensional cases

i) constant force
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For instance, friction acting on a sliding block:
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Notice that if 
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, then W = 0.  No work is done.
ii) varying force

We suppose that Fx = constant during an infinitesimal displacement, 
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.  A tiny bit of work is done by the force 
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If we graphed F vs x, we’d see that this is the integral of F(x) from x = x1 to x = x2.
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In the limit as 
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As an example of a force that varies with x, consider a spring.
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The spring exerts a force on the block (mass = m) 
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This is the work done by the spring on the block.

c.
Kinetic energy

At the same time, 
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.  During the infinitesimal displacement, the elapsed time is 
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What we see is that there is a quantity that changes while the work is being done.  We call that quantity the kinetic energy.  It depends on the mass of the object and its speed.

The equation 
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 is called the Work-Energy Theorem.  When a force does work on an object, it changes the object’s kinetic energy.  [Check the dimensions of K.]

d.
Power

Power is the rate at which work is done.  If W is the work done during an elapsed time, 
[image: image334.wmf]t

D
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The SI unit for power is the Watt:  
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.  A kilowatt is 1000 Watts.  The electric bills often mention kilowatt-hours.  That’s one kilowatt times one hour = 3.6x106 Joules.

Imagine a locomotive engine dragging a train along a straight track at a constant speed of 20 m/sec.  Let’s say the engine exerts a force of 105 N and pulls the train 100 m.  The locomotive engine expends
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2.
Two Dimensional Case(s)

a.
Projectile

A free-falling projectile is acted upon only by gravity.  As the projectile falls, gravity does work on it, changing its kinetic energy.
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We might solve for v.
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Notice that this gives us only the speed; we have to decide on the direction based on our physical intuition.

Notice that all that matters are the magnitudes of the initial and final velocities, not their directions!  Energy has no direction; it’s a scalar.

b.
Inclined plane

An object on an inclined plane is acted upon by a number of different forces, gravity, friction, the normal force, perhaps a tension in a cord or some other applied force.  Each and every force does work on the object as it moves on the inclined surface, from xo to x.
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The total work done by the forces is just the sum of these
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This total work in turn equals the change in the object’s kinetic energy that took place while it slid along the surface.
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B.
Conservation of Energy

1.
Conservative & Non-Conservative Forces

a.
Conservative forces

The work done by a conservative force is independent of the path taken from the initial position to the final position. On the other hand, if the work done does depend on the path taken, then the force is a non-conservative force, or a dissipative force.
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b.
Potential energy

For a conservative force, the work done during a displacement depends only on the coordinates of the beginning and end points.

We define a function, U, such that (for a one-dimensional case)
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The function U is a function of x, and is called the potential energy function.

To obtain U for a given conservative force, solve the expression for the work done by the force, W, for U2, and let U1 be zero.  Because we are interested only in the change in potential energy, we can set the zero anywhere we like.
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c.
Dissipative forces

A dissipative force is a force like friction.  The work done by a frictional force depends on the distance an object slides from point 1 to point 2.  If a longer path is followed between points 1 and 2, then more work is done.  We cannot define a potential energy function for a dissipative force.

2.
Potential Energy Functions

a.
Spring
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The work done by a spring is
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According to the definition of a potential energy function, 
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, so evidently,
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b.
Uniform gravity

[image: image355.png]




[image: image356.wmf](

)

(

)

1

2

1

2

2

1

2

1

U

U

mgy

mgy

mgdy

dy

F

W

y

y

y

y

y

-

-

=

-

-

=

-

=

=

ò

ò


We identify the potential energy function for a uniform gravitational field to be
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c.
Working backwards

We defined the potential energy in terms of work done by a force.  The potential energy, then, is related to the integral of the force over a displacement.  The converse process is to derive the force expression by taking the derivative of a given potential energy function.

Thus, the potential energy function for an elastic, or spring, force is 
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, where x is the displacement from the equilibrium position of an object.  Take the derivative. . .
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Or, take the potential energy for uniform gravity (up is positive).  


[image: image360.wmf](

)

mg

mgy

dy

d

F

y

-

=

-

=


We can extend this to two or three dimensions, with some hypothetical potential energy function, U(x,y,z).
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These three expressions are summed up in one by using what’s called the gradient operator.
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Qualitatively, the force is in the “downhill direction” of the potential energy function.

3.
Mechanical Energy Conservation

a.
Mechanical energy

The mechanical energy is defined to be 
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, the sum of kinetic and potential energies.  Of course, we add them only at the same position or the same time.

Now, if only conservative forces are acting, then 
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We have what is called a Conservation Principle or “Law.”  If only conservative external forces are acting, then the total mechanical energy of a system is conserved.

Dissipative forces, such as friction, do not conserve the total mechanical energy.  In the particular case of friction, some of the mechanical energy of the system is dissipated, or “lost” in raising the temperature of the system.

b.
Examples

i) gravity near the Earth’s surface
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Notice that energy is a scalar quantity, so it will give us information about the magnitude of velocity, but not the direction.

ii) spring
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4.
Gravitation

a.
Universal “Law” of Gravitation


[image: image368.wmf]2

2

1

r

m

Gm

F

g

=


The direction is along the radius, r, and always attractive.

G is the universal gravitational constant, 
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The gravitational masses of the two objects are m1 and m2.  It turns out that the gravitational mass is the same as the inertial mass, though that need not have been so.
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Two objects exert a gravitational force on each other, equal and opposite.  
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Near the surface of the Earth, 
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b.
Potential energy

The work done by the force of gravity while one mass is displaced from r1 to r2 is 
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[image: image375]
For a system of objects, the total potential energy is the sum over pairs:
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c.
Orbit

Consider two objects in orbit around each other, such as the Earth and the Moon.  The total mechanical energy of the system is 
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[image: image378.png]



d.
Escape velocity

Here’s a question:  How fast must an object, starting on or near the Earth’s surface, be moving in order to escape from the earth’s gravity?  We use the conservation of mechanical energy to answer the question.  

i) What constitutes escape?  We’ll say that if the object just comes to rest as 
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ii) We’ll assume that once started, the object coasts—no rocket engines, etc.

iii) We have, therefore, 
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Any object, starting at the Earth’s surface with a speed of 
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 will escape from the Earth.  Notice, too, that the direction of the initial velocity does not matter (as long as it’s not straight down or something like that).

A black hole is an object that is so dense that the escape velocity exceeds even the speed of light.  Therefore, even light cannot escape, and the object would be invisible to an external observer.

C.
Conservation of Momentum

1.
Momentum & Impulse

a.
Impulse

Recall the definition of acceleration:  
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On the left hand side is what is called the impulse—the force multiplied by the elapsed time.  On the right hand side is the change in momentum during the same elapsed time.

Extended to two or three dimensions, the impulse is 
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.  Analogous to the Work-Energy Theorem, we have the Impulse-Momentum Theorem:  
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Impulse and momentum are vector quantities.  If the force varies with time, we have to integrate over time.  
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We define an impulsive force to be a force that acts for a very short time, and is much larger in magnitude than other forces acting.  Usually, we do not know the exact time-dependence of the impulsive force.  Therefore, rather than integrate the force over time, we measure the 
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 that results from the impulsive force.

Example:  A person of 70 kg mass approaches the ground (wearing a parachute) at 
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.  What is the average impulsive force on the person?  (That is, average F over 0.002 s.)  We have one-dimensional motion, with downward being (+).
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If the parachutist allows his/her legs to bend on landing, the 
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This is the reason we want our car fenders to crumple when the car runs into something.  The crumpling has the effect of prolonging the collision thereby reducing the average force exerted on the car.  The deformation of the fenders also dissipates some of the kinetic energy.

Example:  What is the force exerted on a wall when a ball is thrown against it?
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We don’t know 
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[image: image399.wmf]p

r

D

.


[image: image400.wmf]1

2

x

x

x

mv

mv

p

-

=

D


Let’s say that m = 0.5 kg, vx1 = 40 m/s, and vx2 = -20 m/s.  Then the change in momentum is 
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This is the impulse on the ball!  The ball exerts an equal and opposite impulse on the wall.  If the impact lasts 
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, then the average force on the wall is
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b.
Conservation of momentum

Now, if the net external force is zero, then 
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The momentum of an isolated system is constant; it’s conserved.

If we divide the impulse by the time, then we get Newton’s 2nd “Law”
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2.
Collisions & Explosions

a.
Collisions

In a simple, idealized collision, we imagine two objects which collide, exerting only an impulsive force on one another during the collision.  Visualize two billiard balls.  We presume that no other net force is acting on the two balls, so the system of two balls is isolated—the total momentum is conserved.
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Momentum is a vector; the total momentum is the vector sum of the momenta of the two balls.  

We distinguish between elastic collisions and inelastic collisions.  An elastic collision conserves the total kinetic energy as well as the momentum.  In an inelastic collision, the total kinetic energy decreases to some degree.  In a perfectly inelastic collision, the two objects stick together, and become one.

To sum up:  for elastic collisions, 
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 stands for the change(s) in kinetic energy of the objects.  The objects grow warmer, or possibly emit sound waves, etc.

i) elastic  (1 dimensional)
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Because we can choose a reference frame to suit our convenience, we can usually set 
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ii) elastic  (2-dimensional)
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iii) plain inelastic
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ii) perfectly inelastic
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In a perfectly inelastic collision, in effect 
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b.
“Explosions”

We might regard an explosion as a reverse perfectly inelastic collision.  A single object separates into two or more objects.  The conservation of momentum still holds.
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c.
Rockets

Suppose the total mass of a moving object is not constant.  Say the net external force acting on an object (such as a rocket or a rain drop) is 
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 is approximately constant.  Then the impulse delivered to the mass, m, is 
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Further suppose that during that interval 
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 the mass changes by an amount 
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.  The change in momentum that results is
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We want to rewrite this in terms of the change in velocity of the mass, m, and the relative velocity of the m and 
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.  Namely, 
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The impulse, then, is 
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Divide by 
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Recap:  
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 is the velocity of the object (rocket or rain drop), 
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 is the velocity of the 
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 is the absolute value of the time rate of change in the mass of the object.  Actually, we have to be careful of the directions of things.  As derived here, if 
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 is leaving the object, then the object is losing mass and 
[image: image446.wmf]v

r

D

 is in the opposite direction as 
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.  Consider a rocket in the absence of gravity or any other external force.  
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3.
Center of Mass

a.
Position

[image: image452.png]!
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b.
Velocity
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The total momentum of a system of particles is equal to the total mass of the system times the velocity of the center of mass.  
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  If no net external force acts on any part of the system, then 
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 is constant, and so is 
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.  The individual parts of the system may exert forces on each other, but those do not affect the motion of the center of mass.  

c.
Acceleration

On the other hand, if one or more external forces acts on the system, then 
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 is not constant.

The sum of all forces acting on all parts of the system is
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However, because of Newton’s 3rd “Law”, 
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Consider a projectile that fragments in mid flight.
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V.
Rotational Motion & Oscillatory Motion

Until now, we basically ignored the fact that physical objects occupy volume, and have shapes.  We treated everything as if it were a particle—an object with mass but no volume or internal structure.

A.
Rotation of a Rigid Body

A rigid body is an object whose shape and dimensions (length, width, height, radius, etc.) do not change.  The distances between any two mass elements that comprise the body do not change.
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When a rigid body rotates about an axis, all parts of the body rotate at the same rate.  However, because different parts of the body are farther from or closer to the axis, all parts do not have the same linear, or tangential speed.
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1.
Rotational Kinematics

a.
Rotational variables

In the rotational equations of motion, we always use radians as the angular measure, rather than degrees.  Recall that the radian as an angular measure is the ratio between the arc length and the radius of the arc.

By convention, Greek letters are used to represent angular variables.

	name
	definition

	angular displacement, 
[image: image465.wmf]q


	

	angular velocity component, 
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	angular acceleration, 
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b.
Equations of rotational motion

The equations for cases of constant angular acceleration are the same as those for constant acceleration.  Just imagine all of those divided through by a radius.
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Every point in and on the body executes circular motion.  
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Example:  a rigid body, such as a disk, rotates about an axis perpendicular to the plane of the disk.
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The average angular velocity is 
[image: image474.wmf]s

radians

s

radians

t

78

3

0

234

=

-

=

D

D

>=

<

q

w

.

The angular acceleration is 
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[Since α is constant, 
[image: image476.wmf]2

w

w

w

+

>=

<

o

.]
2.
Rotational Dynamics

a.
Moment of inertia

A moment of ____________ is equal to __________ times a squared distance from a point, or axis.  The moment of inertia is mass times radius squared from a point.
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For individual, or discrete particles,
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.  For an object having a continuous mass density, 
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, we have to integrate over the volume of the object.  
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The dimensions of moment of inertia are [M][L]2.

Examples. . . .
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[image: image482.png]



Parallel Axis Theorem:  The moment of inertia is just a sum of scalars.  Therefore, we can divide an inconveniently shaped body into sections that are easier to handle.  By a similar token, we can construct the moment of inertia of a body about an arbitrary axis from the moment about an axis passing through the center of mass of the body.
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b.
Kinetic energy

Each mass element that comprises the rigid body is moving in a circle with speed 
[image: image485.wmf]w
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.  We could add up a total kinetic energy for all the mass elements:
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Notice that the angular velocity is common to all the mass elements.

c.
Angular momentum

Consider a mass, m, with momentum, 
[image: image487.wmf]p

.  Relative to a point O, the mass has an angular momentum equal to
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The magnitude is 
[image: image489.wmf]f
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, while the direction of the angular momentum vector is obtained with the right-hand-rule.
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d.
Torque

The time-rate-of-change of the angular momentum is
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Define the torque, or moment of force, about the point O
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[image: image493.png]



The magnitude of the torque about the point O is 
[image: image494.wmf]f
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 and the direction is obtained from the right-hand-rule.

e.
Conservation of total angular momentum

For a system of particles or of rigid bodies, the total angular momentum of the system about the point O is the vector sum of all the individual angular momenta, about the same point O.
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If the system is isolated, so that the net external force is zero, then 
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 is conserved.  That means both in direction and in magnitude.

A rotational collision:
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A particle of mass m = 0.05 kg and speed v = 25 m/s collides with and sticks to the edge of a uniform solid disk of mass M = 1 kg and radius R = 0.3 m.  If the disk is initially at rest on a frictionless axis through its center, what is its angular velocity after the collision?

The total angular momentum of the system is conserved.  
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f.
Work done by a torque


[image: image500.wmf]F

 is the force applied a the point P.
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 is a short displacement.
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 is the position vector from the selected axis, O, to the point P.
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 is the angle between 
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The work done on a rigid body by an external torque is equal to the change in rotational kinetic energy that results.
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The power expended is 
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3.
General Motion of a Rigid Body

a.
Rolling along

When a rigid body is both translating and rotating, we can divide its total kinetic energy into two parts.
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Here, the angular speed is about the center of mass.

b.
Case studies

i)
Consider an ideal cord wound around a solid cylinder of radius R = 0.5 m and mass M = 10 kg.  The cylinder is set on a horizontal axis and mass of m = 4 kg is hung on the free end of the cord.  What’s the torque experienced by the cylinder and what’s the acceleration downward of the mass, m?

[image: image510.png]



First thing we do is assume that the cord does not slip on the cylinder.

We have a system of two bodies, to which we apply Newton’s 2nd “Law.”

The mass, m:  
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The cylinder, M:
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The tension would tend to cause a clockwise rotation, so it produces a negative torque.  Because the cord does not slip on the cylinder, 
[image: image513.wmf]R
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.  We have therefore two equations and two unknowns.
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ii)
Rolling down an incline
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c.
Gyroscope & precession
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Notice that 
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r

D

 is not down, but sideways.  The spinning disk does not fall, but rather precesses in a horizontal arc.
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4.
Static Equilibrium

a.
Conditions for equilibrium of a rigid body

For a rigid body to be in equilibrium, both the translational and rotational accelerations must be zero.  Therefore, the sum of the external forces and the sum of the external torques must both be zero.
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The torques must be computed about the same axis, but the choice of axis is arbitrary—it need not be necessarily through the center of mass.

b.
Case studie(s)
i)  A uniform beam of length r = 4 m and mass 10 kg supports a 20 kg mass as shown.  The beam in turn is supported by a taut wire.  What’s the tension in the wire?
[image: image599.png]/t/




The beam is in static equilibrium.  Therefore, the sum of forces on the beam is zero, and the sum of torques exerted by those forces is zero.

Fb is the weight of the beam itself.
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To compute torques, we need to specify an axis of rotation.  We choose one that will eliminate some of the unknowns, for instance the end of the beam where it joins the wall.  The force 
[image: image523.wmf]F

 exerts zero torque about that point.  Then the sum of torques reduces to:
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We return to the force component equations in order to find the force the wall exerts on the beam.
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ii) ladder leaning against a wall
The mass of the ladder is M.

The angle is θ.

The length of the ladder is L.
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The forces on the ladder are the normal contact forces and friction exerted by the wall and the floor and gravity, which acts at the center of mass of the ladder.  Each of those forces exert a torque about some selected axis.  Typically, the selected axis is either the top or bottom of the ladder, or both.  It may be the ladder’s center of mass, as well.
If, for instance, the wall is not “smooth”, then there are potentially 4 unknown force components, and therefore 4 equations are needed.
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Since this is a two-dimensional situation, we indicate the directions of the torque by +/- signs.
B.
Oscillatory Motion

Here, we speak of things that go back and forth in a regular way.

1.
Simple Harmonic Motion

Harmonic means there is a sine or cosine in it.

a.
Description

Let y be the displacement of a particle from its equilibrium position.  Then by definition, if the particle is executing simple harmonic motion its position as a function of time is
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A is the amplitude, the maximum displacement either side of equilibrium.

f is the frequency of oscillation, in cycles/second.
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 is a phase factor, which depends on the initial y at t = 0.

Graphically,
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We find sometimes other parameters useful, such as

T is the period of the oscillation.  
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 is the angular frequency, in radians/second.  
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[This was called the angular velocity, and had a line on top in the context of rotational motion.  Here, omega is a scalar, not a vector.]

b.
Equations of motion
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Notice that 
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; the acceleration is proportional to the displacement from equilibrium, but in the opposite direction.  This is exactly what we saw with springs, 
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Evidently, linear restoring forces give rise to simple harmonic motion.

c.
Energy

The total mechanical energy of a simple harmonic oscillator of mass, m, is
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Given v, we can find the corresponding y; given y, we can find the corresponding v.

Notice that the total energy is proportional to the square of the amplitude of the oscillation.

d.
Applying initial conditions to the equations of motion
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Suppose that at t = 0, y = yo and v = vo.  Then
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Given the position and velocity of the mass at one time (usually t = 0) we are able to specify its motion exactly at any other time.

2.
Pendulum

a.
Non-simple pendulum

Consider a mass hanging on the end of a light string, cord or stiff rod.  Two forces act on the mass, the tension in the string, cord, or rod and gravity.  The string, cord or rod constrains the mass to move on a circular arc of radius equal to the length of the string, cord or rod.
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The force of gravity exerts a torque on the mass, about the pivot point of the pendulum
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Notice that the mass has divided out.  Notice that the torque is restoring, tending to return the mass to 
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b.
Simple pendulum

Now we make a simplification by assuming that the pendulum swings in a small arc.  In that case, 
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This exactly simple harmonic motion, if we identify 
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.  The frequency, or period, of a simple pendulum depends only on its length (and on g), not on how much mass is hung on the end.

c.
“Physical” pendulum

Of course, all pendula are physical, except for politico-socio-economic pendula.  The “Physical” pendulum is a pendulum in which the mass is not concentrated at the end of a string, cord, or rod.  

In the equation of motion, we use the moment of inertia.  Assuming small angular displacement (a simple “physical” pendulum, as it were), 
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In this case, the length, 
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, is the distance from the pivot point to the center of mass of the pendulum.  We can identify the angular frequency as before:  
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VI.
Wave Motion

A.
Waves

A mechanical wave is a disturbance that propagates through a material medium.  Electromagnetic waves are moving electromagnetic fields and do not require a material medium to propagate—they can propagate through a vacuum.  All forms of waves have certain “wave-like” properties in common.  [Propagate is a word meaning to travel, but it means more than that.  It implies that the wave is traveling by reproducing itself.]  Here, we will be discussing mechanical waves.

1.
General Wave Properties

a.
Wave pulse
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i) wave speed is a property of the medium.

ii) shape of the wave pulse is unchanged as it travels

iii) two or more wave pulses that exist at the same place & time in a medium add—superimpose.

Mathematically, we write the displacement of the medium at position x and at time t as 
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b.
Periodic waves

A periodic wave consists of a series of identical wave pulses, so the wave pattern is repeating.  The easiest periodic wave mathematically is the sine wave (or cosine).
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The amplitude is A, the wavelength is 
[image: image556.wmf]l

; the frequency is f; the wave speed is 
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.  As the wave passes a specified point in space, the medium there executes simple harmonic motion.
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The (+) sign yields a wave traveling from right to left; the (-) sign a wave traveling form left to right.  We define the wave number it be 
[image: image559.wmf]l

p

2

=

k

.


[image: image560.wmf](

)

(

)

t

 

kx

A

t

x

y

w

m

cos

,

=


c.
Transverse and longitudinal waves

The direction of the disturbance of the medium may be either perpendicular to the direction of wave-travel, or it may be parallel to the direction of wave-travel.  The former is called a transverse wave, while the latter is called a longitudinal (or compression) wave.  For the time being, we won’t concern ourselves with the distinction, but waves in a stretched string are transverse, while sound waves are longitudinal.

d.
Refection
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e.
Superposition

If two or more wave disturbances exit at the same place in a medium and at the same time, they simply add to give a net displacement of the medium.  It is entirely possible then, to have waves traveling in a medium that superimpose to give a zero net displacement of the medium.
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i) standing waves

Consider two sine waves traveling in a medium in opposite direction and having the same amplitude, A..  If their wavelengths are the same, they will superimpose to form what is called a standing wave pattern.  

[image: image563.png]



Every point in the medium oscillates with a constant amplitude.  At some points, spaced one half wavelength apart, the medium does not oscillate—the amplitude is zero.  These points are called nodes.  Midway between the nodes are the antinodes—points whose amplitude of oscillation is a maximum—twice the amplitude of the individual waves.  The standing, or stationary wave pattern does not move through the medium.
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ii) beats

Consider two waves traveling through a medium, in the same direction but slightly different frequencies.  They will superimpose to form a disturbance whose amplitude rises and falls periodically.  These patterns are called beats.  The frequency of the beats is equal to the difference in the two original frequencies.  The effective frequency within the envelope is 
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, the average of the two separate frequencies.
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f.
Energy transport

While the medium in which the wave propagates does not flow from one place to another, the wave disturbance nonetheless carries energy from one place to another.

Each mass element, dm, of the medium executes simple harmonic motion.  K is the restoring force constant.  It’s related to the frequency by 
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Over one cycle, the cosine-squared and sine-squared average to 
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.  The total mass of the medium spanning one cycle (or one wavelength) is 
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 is the mass per unit length of the medium.
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In terms of the wave speed, c, 
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2

2

A

 

f

 

c

 

E

m

p

=

.  The energy flux is the power transported through the medium by the wave:  
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.  The intensity is the power per unit area through which the power is transported:  
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, where 
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 is the mass per unit volume.
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3.
Stretched String

a.
Tension

One end of a stretched string is fixed, as if tied to a wall.  That end cannot be displaced.  If the free end is disturbed by an outside force, then a pulse is generated which then propagates along the string, until it encounters the wall.  The fixed end cannot move, so a reflected pulse is created which travels back along the string, but in reversed orientation.  Regardless of the exact shape of the pulse, it travels with the same speed.  We observe that the wave speed in a stretched string is 
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We can derive the wave speed in the string by applying Newton’s 2nd “Law” to a short segment of the string.
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But also,
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This is the wave equation for a wave travelling along the x-axis with speed 
[image: image583.wmf]l
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b.
Normal modes

Because of the boundary conditions imposed on the string, only certain waves are able to persist in the string.  In particular, since the ends of the string are fastened, they cannot move—the ends must be nodes.  Only waves for which the string length equals an integral number of half-wave lengths will persist in the string.  Put another way, the string will vibrate at only certain discrete frequencies, corresponding to those allowed wavelengths.  The allowed frequencies are called normal modes of the string.  The normal modes are also known as the string’s natural frequencies of vibration.  Every physical system has natural vibration modes, based on its dimensions and elasticity.  For a string, those are its length and its tension and its mass per unit length.
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The normal modes frequencies for the string are 
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, where v is the wave speed in the string.
c.
Spectra
An arbitrary wave form may be expressed as a superposition of sine waves having differing amplitudes.  This exactly analogous to expressing a function as a Fourier Series.
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The Fourier components are just the normal modes, fn.  The chart of the amplitudes is what we call the spectrum.
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4.
Pressure waves--Sound

a.
Longitudinal waves
b.
Pressure amplitude
c.
Properties of the medium, speed of sound
d.
Doppler Effect

VII.
Thermodynamic

A.
“Heat” Flow

1.
Temperature

a.


b.


2.
Energy Transport

a.
Mechanisms

b.
R-values

B.
“Laws” of Thermodynamics

1.
Energy Changes

2.
Entropy

3.
Heat Engines
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Let’s take a closer look at our (+/-) signs.  The force is in the –r direction.  The displacement is in the +r direction, and r is always (+).  The anti-derivative gives a (-) sign.   The W is negative change in U.  Hence, U is (-).
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Note:  the units are a part of the measurement as important as the number.  They must always be kept together.
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