Physics 104

General Physics II Notes

© J Kiefer 2010

Table of Contents

1Table of Contents


2I.
Electromagnetism


2A.
Electrostatics


21.
Electric Charge


32.
Coulomb’s “Law”


43.
Electric Field


94.
Gauss’ “Law”


145.
Electric Potential


176.
Conductors and Insulators


187.
Capacitance


21B.
Electric Current


211.
Current


242.
Direct Current Circuits


283.
Magnetic Fields


334.
Magnetic Induction


395.
Alternating Current Circuits


436.
Maxwell’s Equations


46II.
Optics


46A.
Geometrical Optics


461.
Wave Fronts & Light rays


482.
Mirrors


503.
Lenses


53B.
Physical Optics


531.
EM Waves


542.
Diffraction & Interference


573.
Quantized Waves


60III.
Atoms


60A.
Structure of the Atom


601.
Bohr Model


612.
Nucleus


62B.
Subatomic


621.
Leptons & Quarks


622.
Hadrons


623.
Anti-Matter





I.
Electromagnetism

A.
Electrostatics

1.
Electric Charge

a.
Charge

The physical quantity we call electric charge is a property of matter.  The particles of which all material objects are made have inertia (mass) and electric charge, among other properties.  In contrast to mass, however, electric charge occurs in two kinds, which are called positive (+) and negative (-).  The net charge on an object is simply the sum of all the individual +/- charges present.  Charged objects (objects with non-zero net charge) exert equal and opposite forces on each other.

The SI unit of charge is the Coulomb (C).

b.
Quantized charge

Charge is a property of subatomic particles, such as the proton & electron.  It is found that isolated charges exist only in integer multiples of a constant number, e.  Ions, or other charged bodies, have an imbalance in the numbers of electrons & protons.  The electron has a charge of –e, while the proton has a charge of +e.  In practice, larger objects become charged by the addition or subtraction of electrons.  We speak of charges being present, or being in motion.  In fact, the charges are charged particles of matter. Fractional charges, that is, fractional multiples of e are never observed on particles that can exist independently.  

In SI units, 
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c.
Static charge

Static means unmoving.  Electrostatics, then, refers to situations in which the distribution of electric charge is fixed.  The electric charges are not allowed to move.  Either the net electric force on each charge is zero, or other external forces balance the electric forces.

d.
induced charge separation
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2.
Coulomb’s “Law”

a.
Point charges

The force that acts between two point charges is described by Coulomb’s “Law”.
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The magnitude is
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; the direction is along the radius joining the two charges.
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Step 2: Starting Equation

The force exerted on q1 by q2 is 
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.  Notice that the unit vector 
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 points from q2 toward q1.  Since charge comes in (+) and (-) kinds, the electrostatic force may be either attractive or repulsive.  “Like charges repel, unlike charges attract.”
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Step 3: Complete the Math
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Step 3 (continued)

r
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The constant k is called the Coulomb constant; in SI units 
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Step 3: Replace Generic Quantities by Specifics
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Draw a representative 

sketch—done.

Draw and label relevant 

quantities—done.
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done.

Step 1: Diagram


b.
Superposition

The total electrostatic force on q1 exerted by a number of other point charges is the vector sum of the forces by the individual charges.
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Naturally, this vector sum is performed using the force components along the axes of a selected reference frame.

3.
Electric Field

a.
Definition

[image: image355.png]


The concept of an electric field is a means of representing the influence of a charge on other, distant charges.  The source charge gives rise to an electric field that extends throughout space.  Other charges in the field experience an electrostatic force.  Quantitatively, the electric field at a point is space is derived from the net electric force on a small positive test charge, qo, located at that point.  It is assumed that the existence of the small test charge does not cause a rearrangement of the source charge(s).
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So, the field exists independently of the test charge.  Once the electric field is defined, then the electric force felt by any point charge placed in the field at any location is 
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The electric field is a vector quantity.  The SI units of electric field are 
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.  Mathematically, the electric field is a point function, in that it specifies a magnitude and direction at every point in space.

b.
Electric field lines

An electric field is represented pictorially using electric field lines.  These are lines drawn according to the following rules:

i) the electric field at any point is tangent to the electric field line.

ii) the spacing, or density, of the field lines is proportional to the magnitude of the electric field.  Where the magnitude is greater, the lines are more closely spaced.

iii) field lines originate from (+) charges and end on (-) charges.

c.
Field due to a point charge
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d.
Field due to a dipole source
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e.
Field due to a continuous line of charge
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There may be electric charge distributed throughout a macroscopic object, or over its surface.  Then we speak of volume charge density, 
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 (C/m3) or surface charge density, 
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 (C/m2) or linear charge density, 
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 (C/m).  The electric field at a point P due to the charge densities is obtained by integrating over the charge distribution.  Each charge element, dq, makes a contribution 
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 to the net field at the point P.  For a three dimensional charge distribution, 
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In practice, we decompose.  For a simpler example, integrate over a continuous linear charge distribution.
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f.
Field due to an infinite sheet of charge
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4.
Gauss’ “Law”

a.
Electric flux, 
[image: image29.wmf]Y


Imagine that electric field lines represent the “flow” of something from one place to another.  Now, consider field lines passing through a possibly imaginary surface of area A.  
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The field lines make an angle, 
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, with the surface normal, 
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.  Of course, the electric field may not be uniform over the entire surface, so we break the surface into surface elements, and integrate.
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If the surface is a closed surface, then unless there are source charges inside the surface, the flux entering the closed surface equals the flux leaving, and the net flux through the closed surface is zero.
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b.
Gauss’s Theorem
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Applied to electrostatics, Gauss’ “Law” says that
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where Q is nothing more than the total net electric charge enclosed by the surface.  The constant 
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 is called the permitivity of free space (or of the vacuum).  Gauss’ “Law” is particularly useful when the source charge distribution is highly symmetric in shape.  That such a case, the flux is easy to compute, and the E-field can be obtained without carrying out an integral over the source charge distribution.  For instance, we can demonstrate the validity of Gauss’ “Law” for a point charge source.
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c.
Examples

i) uniform spherical distribution of charge
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This seems almost too easy.  It requires that we realize that the electric field will be the same magnitude, and directed outward (or inward) all around at a specified distance from the spherically shaped, uniform charge distribution.

ii) line of charge
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iii) infinite sheet of charge
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Notice that the electric field points upward and downward from the sheet of charge.  Therefore the flux goes out both the top and bottom of the cylindrical surface.

5.
Electric Potential

[image: image47.png]



a.
Potential energy
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The Coulomb’s “Law” is very similar to the Universal “Law” of Gravitation.  The electrostatic potential energy has a form similar to the gravitational potential energy function.
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This claim can be verified by computing the work done by the electrostatic force as two point charges are brought from infinite separation to a separation 
[image: image50.wmf]12
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.  Like the gravitational potential energy, the electrostatic potential energy of several (that is, n) point charges is equal to the sum of pair-wise terms.
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Notice the “triangular sum” that prevents us from counting any given pair of charges twice.

b.
Potential, or voltage

Another useful quantity is the potential energy per unit charge, or potential.  Imagine one of the n point charges in a system being a test charge, qo.  We’d start counting from i = 0 and end with i= n – 1.  The potential energy of the system would be
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Now consider the change in potential energy for the test charge qo if the test charge moves from one position to another while all other charges remain fixed in place.  The potential energy changes 
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.  The electric potential energy per unit charge at the location of the test charge is 
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.  The SI unit of electrostatic potential is the Volt (V).  
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.  In terms of voltage, the magnitude of the electric field is 
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.  In this connection, we can define a new unit of energy, the electron Volt (eV).  
[image: image58.wmf].

10

6

.

1

1

1

19

J

V

e

eV

-

´

=

×

=

  It’s the energy gained by an electron when experiencing a voltage change of one Volt.

c.
Voltage in a uniform E-field

For a displacement vector, 
[image: image59.wmf]s

, in a uniform electric field, 
[image: image60.wmf]E

, 
[image: image61.wmf]s

E

V

×

-

=

D
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d.
Sources of electric potential

i) point charges
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Evidently, for a point charge source, 
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.  For a number of point charge sources, the potential is added up:  
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, where ri is the distance from qi to the field point, the point in space at which we are computing the potential.

ii) a line of charge

For a continuous charge distribution, we have to integrate.  The fact that the potential is a scalar quantity makes the integration a little easier than the integration of the electric field, which is a vector.
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For instance, to compute the potential due to a line of charge. . .
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e.
Equipotential lines

By definition, 
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.  Solve as it were for the field components.  
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An equipotential is a curve or surface in space along which the potential is the same value.  Equipotentials have the following additional properties:  

i) the electric field is perpendicular to equipotentials

ii) equipotential lines or surfaces never cross each other—if they did so it would imply that there were two values of potential at the same point in space.

6.
Conductors and Insulators

a.
Conducting materials; insulating materials

In conducting materials, there are charged particles that are free to move in response to an external electric field, or in response to electric forces among themselves.  These are metals for instance, or electrolytic solutions, or plasma.  [Plasma is a gas composed of charged particles—electrons and ions.]

Insulating materials lack the free charged particles, therefore they will not conduct electric current.

b.
Static charges & E-fields and conductors
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Since charges are free to move within a conductor, they do so until achieving equilibrium.  For instance, if an external electric field is imposed upon a conductor, the free (+/-) charges move in opposite directions in response, until the secondary electric field the separated charge carriers create is equal but opposite to the external field.  Therefore the net static electric field inside a conductor is zero.  By a similar token, if excess charge resides on a conductor, it will spread out in such a way as to maximize the separation between like charges.  Therefore, excess charge resides on the outside surface of a conductor.  Further, the static electric field near the surface of the conductor must be everywhere perpendicular to the surface, else a tangential component of the field would cause the free charges to move until the net tangential component is zero.
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Finally, consider a charge +Q inside a hollow conducting shell.  Negative charge will be drawn to the inside surface, and positive charge driven to the outside surface, both equal in magnitude to Q.  The electric field inside & outside of the shell is just that of a point charge source, while the net field within the thickness of the conducting shell is zero.

7.
Capacitance

a.
Definition of capacitance
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The SI unit of capacitance is the Farad (F).  
[image: image80.wmf]V

C

F

1

1

1

=

.  The capacitance is computed by finding the voltage between the two conductors, then dividing by the magnitude of the charge on one of the conductors.  This is easy only for simple geometries, like flat plates or spheres.  The voltage is gotten by knowing the electric field and computing 
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 is the displacement of one conductor from the other.
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Example—two parallel conducting plates.

Assume that that the E-field is perpendicular to the plates, all over the plates.  This means we are neglecting edge-effects, where the field lines curve outward past the edges of the plates.  We might also say that we are assuming that the two plates are infinite in area.  In such a case, the E-field is uniform between the plates.
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Set the two expressions for the E-field equal, and solve for 
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Notice that the capacitance of the two parallel plates depends on the geometry of the plates--area and separation.

c.
Energy storage

In order to separate the +Q and –Q charges on the two plates, work must be done.  Let’s say we transfer a small amount of charge, dq from one plate to another that already has an excess charge q on it.  The work done  is 
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.  This is a change in electrostatic potential energy, which we regard as being stored on or in the capacitor.
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It is convenient to associate the stored energy with the electric field that “fills” the space between the plates.  We define the energy density to be the energy per unit volume.
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d.
Dielectric breakdown in a capacitor

[image: image90.png]



The constant 
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 is the permitivity of the vacuum, or of “free space.”  Material substances, particularly insulators, called also dielectric materials, have permitivities greater than 
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.  If the space between the plates is filled with an insulating substance, then the capacitance is increased. 
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.  More charge can be stored at the same voltage.  However, the E-field polarizes the molecules of the insulating substance.  If the E-field is large enough, it ionizes those molecules, and the substance becomes conductive, leading to a spark discharge.  The dielectric has broken down.

e.
Combinations of capacitors

i) series

For capacitors connected in series, the charge on each capacitor is the same Q.  If it weren’t, charge would flow until it was.
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The equivalent capacitance of the series combination is 
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ii) parallel
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For capacitors connected in parallel, it’s the voltage that is the same on each of the capacitors.
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The total charge stored on the capacitors is 
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Sing it out:  “capacitors in series have the same charge; capacitors in parallel have the same voltage.”

B.
Electric Current

1.
Current

Electric current is charged particles in motion.

a.
Charge carriers

Charge carriers are charged particles whose motion is the electric current.  In a metal wire, the charge carriers are electrons, in electrolytic solutions the charge carriers are ions, in particle beams the particles may be electrons, protons or ionized atoms.  We imagine the particles passing through a virtual surface area, A.  Then the current is defined as the amount of charge passing per unit time.
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In terms of the number of particles passing through the surface,
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n is the number of particles per unit volume

q is the charge on each particle (assuming for the moment that they are all the same.

vd is the average velocity of the particles.

A is the cross sectional area through which the particles are passing.

For instance, in Copper, 
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If we divide by that cross sectional area, we obtain the current density, 
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The SI unit of electric current is the Ampere’ (A).  
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Current density is actually a vector quantity.  The direction by convention is (+) in the direction that (+) particles are moving.  The movement of (-) particles from right to left is equivalent to (+) particles moving from left to right.

b.
Ohm’s “Law”

[image: image108.png]



In some conductive materials, it is found experimentally that 
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wherein 
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 is the conductivity of the conductor.  This is called ohmic or linear behavior.

Consider a section of conducting wire.  
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If the E-field is uniform throughout the wire, then the voltage from one end of the wire to the other is 
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.  Substituting for the E-field in the current density,
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We define the resistance of the wire, 
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.  Notice that the conductivity is a property of the substance, while the resistance is a property of the particular piece of that substance.

The SI unit of resistance is the Ohm (
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).  
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To make it more confusing, we also sometimes use the resistivity, 
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.  It turns out that the resistivity (or the conductivity) is a function of temperature.
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For metals in particular, usually we expect 
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 would be parameters characteristic of a particular metal, such as Copper or Aluminum, etc.

c.
Power

When a current passes through a voltage drop, the charge carriers are losing potential energy.  The time rate of change in the potential energy is
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For ohmic devices, or materials, V = RI, therefore
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This is the power dissipated by the current flowing through a resistance.  

[Keep in mind that the V is a voltage difference between two locations, even though we don’t use the 
[image: image124.wmf]D
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On the other hand, a device which increases the potential energy of the charge carriers is called an electromotive force, or EMF.  Batteries, generators, & solar cells are sources of EMF.

2.
Direct Current Circuits

Direct current is current that flows in one direction at all times.

a.
Internal resistance of a battery

The material of which a battery is made has electrical resistance of its own.  Therefore, the terminal voltage, the voltage available to a circuit, is 
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, where r is the internal resistance of the battery.  If R is the total resistance of the external circuit, then we can write 
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b.
Kirchhoff’s Rules

We have a system, or procedure as it were, to find the current flowing in different branches of an electrical circuit.  The approach is to apply conservation principles to the flow of charge.

i) the total current entering a junction must equal the total current leaving the junction.

ii) the sum of potential differences around any closed circuit loop is zero.

In practice:

i) assume some directions for the currents.

ii) form loop equations by applying Kirchhoff’s Rules to closed circuit loops.

iii) when tracing a loop, remember to multiply by (-1) when traversing a device opposite to the assumed current flow.

iv) if a battery is traversed from (+) to (-) terminals, then 
[image: image127.wmf]V

V

-

=

D

 rather than V.

v) if you are solving for currents, the algebraic signs of your answers will tell you the correct directions of the current flows.

c.
Resistances in series and in parallel

series

[image: image128.png]



I1 = current through R1.

I2 = current through R2.

I = current through the battery.

We choose to traverse the loop clockwise.

i) 
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, since there are no branches.

ii) 
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rearrange


[image: image131.wmf](

)

eq

IR

R

R

I

EMF

=

+

=

2

1


The equivalent resistance is 
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i) 
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ii) loop 1
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    loop 2
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    loop 3
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We want the two currents, so solve the first & third loop equations.


[image: image138.wmf]1

1

2

2

  

and

  

R

EMF

I

R

EMF

I

=

=


If follows then that 
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The equivalent resistance is 
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d.
Example
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e.
Charging & discharging a capacitor

Charging a capacitor requires a battery.
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When the switch, S, is closed, current flows and charge accumulates on the capacitor.  The loop equation is
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Notice that we traverse the capacitor in reverse.  Initially, 
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, but as q increases, the current I decreases until 
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We define the time constant (or the decay constant) to be 
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 for a charging capacitor.

On the other hand, if we envision discharging a capacitor through a resistance, 
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3.
Magnetic Fields

Moving charges generate magnetic fields; magnetic fields exert forces on moving charges.

a.
Biot-Savart “Law”

A current element, or a short segment of electric current, 
[image: image153.wmf]l
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 generates a contribution to the magnetic field at the point O:
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The permeability of free space is 
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The total magnetic field at the point O is obtained by integrating along the current path.
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For example, consider a circular loop of current, and find the magnetic field at a point on the axis of the loop.

[image: image157.png]



The SI unit of magnetic field is the Tesla (T).  
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b.
Ampere’s “Law”

In highly symmetric situations, we have something similar to Gauss’ “Law”.
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The I is the current passing through the interior of a closed loop
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Example, a long, straight wire.

At a distance R from the long wire, 
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 has the same magnitude all around the wire, and the B-field is parallel to the 
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 also all around the wire.
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Example, inside a long coil of radius a.

We can think of a coil as number of current loops, side by side.  We’ll assume that the magnetic field inside the coil is straight and uniform.
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Now, if the fields and currents are not steady, then we generalize Ampere’s “Law” by adding another term.
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[image: image168.wmf]Y

 is the electric flux through the integration loop.

We define a kind of effective current associated with the time-changing flux, called the displacement current.
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c.
Magnetic force on moving charges

The magnetic force on a single charged particle is 
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q is the charge on the particle


[image: image171.wmf]v

 is the velocity of the particle


[image: image172.wmf]B

 is the externally applied magnetic field

Since the force is perpendicular to the velocity, the magnetic force on the moving charge does no work.  The external magnetic field can change only the direction of the velocity, but not its magnitude.

Now, if a number of charge carriers are moving along a conductive wire, each will experience a force in an external magnetic field.  The wire will experience a force that is the total of all the forces on the individual charge carriers.
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n is the density of charge carriers in motion

q is the charge on each carrier

A is the cross-sectional area of the wire


[image: image175.wmf]l

 is the length of the wire, immersed in the B-field

vd is the drift velocity of the charge carriers
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Let’s say that the conducting wire is not straight.  Then the force on each short segment of current-carrying wire is
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If the B-field is uniform, then we can integrate before taking the cross product.
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where 
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 is the vector pointing straight from the point a to the point b.
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If the current follows a closed loop, in a uniform magnetic field, then 
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=0, since the point a and the point b are the same point.  Therefore, the net magnetic force on a closed current loop in a uniform magnetic field is zero.

d.
Magnetic torque on current loops

On the other hand, a uniform magnetic field does exert a torque on a closed current loop.  Consider a rectangular loop carrying a current, I, in a uniform magnetic field.
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Add up the forces on each side of the rectangle.  The sides of length “a” experience no force, since 
[image: image183.wmf]0
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.  The sides of length “b” experience equal but opposite forces, because the directions of the current is opposite, relative to the magnetic field.  However, there is a torque about the axis through the middle of the loop.
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If the angle is not 90o, then more generally,


[image: image186.wmf]q

t

sin

IAB

=


where 
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 is the angle the B-field makes with the normal to the plane of the loop.  The direction of the torque is obtained by the right-hand-rule.

Define the magnetic moment of a current loop 
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, with the direction gotten by the right-hand-rule.  Then 
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e.
Potential energy of a current loop in a magnetic field

If a current-carrying loop rotates in a magnetic field, the magnetic field will do work.
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4.
Magnetic Induction

a.
Magnetic flux

Similarly to electric flux, we define the magnetic flux to be 
[image: image192.wmf]ò

×

=

F

surface

A

d

B

.

[image: image193.png]



Over a closed surface, 
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This means that there are no isolated magnetic monopoles.  We never find isolated north or south magnetic poles.

b.
Faraday’s “Law” of Induction

Consider a conduction loop in a magnetic field.  There will be a certain amount of magnetic flux through the loop.  If the flux changes with time, an EMF is induced in the conducting loop proportional to the time-rate-of-change of the flux.
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An electric field is created by a changing magnetic flux.

In a uniform B-field, 
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i) changing B
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ii) changing A
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Now, the moving bar experiences a magnetic force because of the current.  
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Lenz’s “Law” told us the direction of the induced current.  The observed fact is that the induced current is always directed in such a way as to counteract or compensate for changes in the original external magnetic flux.  The net flux through a conducting loop is equal to the sum of the external magnetic flux and the induced magnetic flux.

iii) changing 
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Imagine a conducting loop with area A, spinning with angular velocity 
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, in a uniform B-field.  
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The induced EMF is
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The induced current that results in the loop is
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The current is alternating, flowing back and forth.  Of course, if there are N loops, forming a coil, then everything is multiplied by N.

c.
Inductance

[image: image360.emf]32
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Let us say that the magnetic flux through a conducting loop is changing.  The change in magnetic flux in turn generates an induced EMF.  That induced EMF drives an induced current.  That induced current generates a new magnetic field, so two magnetic fields are present:  the original externally applied field and the field due to the induced current in the loop.  Lenz’s “Law” tells us the direction of that induced current.  It is observed that the induced current is always directed so as to counteract or compensate for changes in the original external magnetic field.  If the external magnetic flux is decreasing, the induced B-field will be in the same direction as the external field.  If the external magnetic flux is increasing, the induced B-field will be opposite to the external B-field.

Consider what happens when the current in a loop or circuit is changing.  A circuit loop comprises a loop of current, which generates a magnetic field.  If the current changes, the magnetic flux through the circuit loop changes.

[image: image209.png]



Here is the chain of events:

i) close the switch—the current increases from 0.

ii) the magnetic field due to this current also increases.

iii) the magnetic flux through the current loop increases, inducing an EMF in the circuit.  (this is the self-induced EMF.)

iv) according to Lenz’s “Law”, the self-induced EMF opposes the current increase.

v) when the current reaches equilibrium at 
[image: image210.wmf]R
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, the magnetic flux is constant thereafter.  The induced EMF vanishes.

vi) similarly when the switch is opened.

We define the inductance, L, of a conducting loop or circuit as 
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For a coil of N identical loops, with the current I in each loop the inductance is 
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More generally, 
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.  Its value depends on the geometry of the loop(s).

The SI unit of inductance is the Henry(H).  
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d.
Energy storage in magnetic fields

i) RL-circuit
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Let us multiply the circuit loop equation by the current, I.
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These three terms have units of power, which suggests that we might define an energy stored in the inductor by integrating.
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Specifically for a coil, 
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.  This allows us to substitute in Um for the I in terms of B.
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The energy density is the energy divided by the volume enclosed inside the coil.
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ii) LC-circuit

We assume that there is no resistance in the circuit.  Initially, the capacitor is charged with Qmax.  The total energy in the circuit is U = UC + Um.  At t = 0, I = 0 and 
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.  When the switch is closed, the capacitor begins to discharge.  The current increases to a maximum Imax at t = t’, at which time U
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There are not many functions that are proportional to their own second derivative.  One is the cosine.   
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.  In turn, the current is 
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.  What we see is that the energy sloshes back and forth between the electric field in the capacitor and the magnetic field in the inductor.  That is, the circuit oscillates.  The frequency of oscillation is 
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.  The circuit can be “tuned” by adjusting either L or C, usually the latter.  This electrical circuit has exactly the same “equation of motion” as a harmonic oscillator.

iii) RLC-circuit
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The resistor dissipates energy when the current is not zero:  
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This is exactly the same equation we obtain for the damped harmonic oscillator—a harmonic oscillator with a dissipative force, such as friction.
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5.
Alternating Current Circuits

a.
Alternating current & voltage
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We use the rms quantities to describe a.c., along with the frequency, f.  For instance, the standard electrical residential supply is Vrms = 115 V at f = 60 Hz.

b.
Reactance & impedance

Reactance and impedance are generalized concepts of load resistance.

i) reactance

Consider an inductor circuit.
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Solve for the current.
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Notice the phase shift between the voltage and the induced current.  Define inductive reactance to be:
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Reactance has units of Ohms.  The voltage on the inductor is written 
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The current in the inductor lags behind the applied EMF.

Similarly for a capacitor, we define a capacitive reactance, 
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The voltage on the capacitor lags behind the current into the capacitor.

Defining reactances in this way puts resistances and capacitances on the same footing in the relationship between voltage and current.  I.e., the magnitudes of the voltages on the circuit elements are written as
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ii) impedance

Consider an RLC circuit, with an alternating EMF.
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The loop equation is 
[image: image249.wmf]R

C

L

v

v

v

v

+

+

=

.  We’d like to write a simple form for the “effective resistance” of the circuit.  
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In general, the current in an a.c. circuit lags the applied EMF.

c.
Transformers

Consider a circuit having two coils, a source EMF, and a load resistance as shown.
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v1 = input voltage (primary)

v2 = output voltage (secondary)

N1 = number of turns (loops) on primary coil

N2 = number of turns on secondary coil

R = load resistance

By Faraday’s “Law,” 
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 in the primary coil.  The change in flux induces a voltage in the secondary coil.
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The voltage can be stepped up or stepped down, according to the ratio of the number of turns in the coils.  
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From the point of view of the primary coil,
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For an ideal transformer, we would expect 
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 by virtue of conservation of energy.
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This is an equivalent resistance “seen” by the source EMF.

6.
Maxwell’s Equations

In the mid nineteenth century, Maxwell brought together Gauss’ “Laws” for the electric & magnetic fields with Faraday’s “Law” of Induction & Ampere’s “Law” into a set of equations—Maxwell’s Equations.
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These describe the relations between electric & magnetic fields.  Further, they can be combined to form a wave equation for either the electric or magnetic field.
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The apparent fact that the wave speed in this equation equals the measured speed of light indicates that light is an electromagnetic wave.  We’ll illustrate this by working backwards to show that electromagnetic plane waves in the vacuum are consistent with Maxwell’s Equations.

In the vacuum, Q = 0 and I = 0.  The plane wave propagates in the x-direction, the E-field is in the y-direction and the B-field is in the z-direction.
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Begin with Faraday’s “Law”, substituting for the magnetic flux on the right-hand-side.  The 
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 is along the y-axis.
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Similarly, substitute for the electric flux on the right-hand-side of the generalized Ampere’s “Law”.  This time the 
[image: image265.wmf]l

 is along the z-axis.  (The current, I, is zero.)
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Take the derivative of the result from Faraday’s “Law”, and substitute for 
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 from Ampere’s “Law”.
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This is the wave equation, describing waves traveling with speed 
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.  This number turns out to be equal to the observed speed of light, namely 
[image: image270.wmf]s

m

c

8

10

3

´

»

.

II.
Optics

A.
Geometrical Optics

1.
Wave Fronts & Light rays

a.
Pictorial representations

There are two alternative ways of depicting waves in a drawing.  The first is to draw the wave fronts.  Wave fronts are surfaces over which the phase of the wave is the same.  That is, the disturbance is the same in direction and magnitude everywhere on the wave front.  Think of ripples in a water surface.  The second way to depict the wave motion is to draw arrows showing the direction in which the wave is moving—these are rays.  In the case of light, we speak of light rays.  

b.
Plane waves & spherical waves

In a plane wave (not plain!), the wave fronts are straight; the rays point all in the same direction.  Here, the waves are propagating from left to right:

[image: image271.png]wave frant





Spherical waves are diverging from a centrally located point source.  The wave fronts are concentric spherical shells propagating outward from the central point.  The rays radiate outward equally in all directions.  Equally well we might have waves converging on a central point rather than radiating outward.  In the case of spherical waves, the energy transported by each wave front, as it were, is spread out over an ever-larger spherical surface.  Therefore, the intensity, or power per unit area, decreases by the square of the distance from the source.  This is the famous inverse-square law, which applies to anything that radiates equally in all directions from a point source.
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c.
Interface

Light travels in a straight line in a uniform medium.  At an interface between media of differing properties, reflection and refraction will occur.  The reason for this is the change in wave speed that occurs between one medium and another.  The index of refraction of a medium is defined as the ratio of the speed of light in the vacuum to the speed of light in the medium. 
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Notice that the angles are measured with respect to the normal at the interface.
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“Law” of Reflection:  the angle of incidence equals the angle of reflection  
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Snell’s “Law” of Refraction:  
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d.
Images

An image is formed where light rays converge, or appear to converge.  In the former case it’s called a real image; in the latter case, it’s called a virtual image.  The technique of locating the image by following the path of the light rays is called ray tracing.

Rules for tracing rays 

Light rays radiate from every point on the source object.  We follow, or trace, the path of two or three representative rays from a couple of representative points on the source object.  The following rules are valid for light rays close to or nearly parallel to the optical axis.  These are called paraxial rays.


i) incident rays parallel to the optical axis pass through the focal point after 

encountering the interface.


ii) incident rays passing through the focal point before encountering the interface 
leave the encounter parallel to the optical axis.


iii) rays encountering the interface at the optical are not refracted.

2.
Mirrors

a.
Flat, or plane mirror (not plain!)

The “Law” of Reflection says that the angle of reflection equals the angle of incidence.
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By similar triangles, we can say that
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A plane mirror forms an erect, virtual image, with a magnification of 1.0.  To an observer, the light rays appear to come from a source behind the mirror—that is the location of the virtual image.

b.
Spherical

A curved surface can form a real image in front of the mirror.

[image: image279.png]vy





R = radius of curvature of the spherical mirror

c = the center of curvature

f = the focal point (and focal length, from the center of the mirror)

y = the height of the object, from the optical axis

y’ = the height of the image, from the optical axis

s = the object distance, from the center of the mirror

s’ = the image distance, from the center of the mirror

Note that y, y’ are (+) above the axis, (-) below.  Likewise, f, s, s’ are (+) on the object side of the mirror.

By similar triangles, we can see that the lateral magnification, 
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With a convex mirror, the reflected rays diverge, so the image is virtual and erect:  y’ > 0 but s’ < 0.  The lateral magnification is 
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3.
Lenses

a.
Spherical interface 

At a curved surface between media of differing indices of refraction.

Location of the image
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By inspection, 
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For paraxial rays, 
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Knowing s, n, n’, and R, we can determine s’.  This expression works also for a mirror, with n = n’.

Lateral magnification

Ina similar vein, we can determine the magnification by a curved interface.
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Once more, for paraxial rays, 
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b.
Thin lenses

A lens is formed by a combination of two curved surfaces.  A thin lens is one in which the radii of curvature are much greater than the separation of the two surfaces (the thickness of the lens).  Here is a double convex lens.
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The distances s, s’, R, and f are (+) on the sides(s) that the real light rays travel (as opposed to virtual rays).  By similar triangles,
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Set ‘em equal.
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For a converging lens, f > 0; for a diverging lens, f < 0.  However, a converging lens can produce a virtual image, if s < f.  the lens shown below is a double concave lens, with a negative focal length.
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c.
Lens makers equation

The Lens Maker’s Equation relates the focal length to the curvatures of the two surfaces and to the indices of refraction on either side of the lens and inside the lens.  We derive the equation by tracing an arbitrary ray through the two surfaces in sequence.  In effect, the image formed by the first surface serves as the object for the second surface.

At the first surface, 
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Notice this—we are assuming that the index of refraction is the same on both sides of the lens.  This need not be the case.  

For a thin lens, s2 = -s’1.
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B.
Physical Optics

1.
EM Waves

a.
Reflection & refraction & dispersion

Why waves refract when crossing the interface between two media can be shown by looking at wave fronts.  Consider a plane wave approaching a straight interface at an angle.

[image: image306.png]S




The part of the wave front that encounters the boundary first changes speed, while the part of the wave front not yet meeting the boundary continues at its original speed.  As a result, the wave front is bent, or the direction of propagation is altered.  

On the other hand, the reflected wave front has not changed speed, so the angle of reflection is the same as the angle of incidence.
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b.
Energy & intensity

In a region of space where electric and magnetic fields exist, the energy density is
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  As the EM-wave advances, energy is transported, 
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The intensity of the EM-radiation is the time average of S.  For sinusoidal waves, the time average of the sine2 or cosine2 is 
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The SI units of intensity are W/m2.

c.
Polarization

In this course, we’ll mention just a qualitative description of polarization.  The EM-wave is a transverse wave.  The electric and magnetic fields oscillate in planes perpendicular to the direction of propagation.  If the direction if the electric field is constant, that is always along the y-axis while the wave propagates along the x-axis, for instance, then the wave is said to be linearly polarized.  Polarizing materials allow E-fields oscillating along one axis to pass through while blocking E-fields of other orientations.  Some surfaces reflect E-fields that are tangent to the surface but absorb fields normal to the surface.

Circular polarization occurs when the E-field rotates like the second hand of a clock as it oscillates.

Ordinary light waves from a light bulb or the Sun are randomly polarized—the E-field is not constantly in the same direction.

2.
Diffraction & Interference

a.
Diffraction

[image: image314.png]i
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When light rays encounter a barrier, they scatter and spread out.  Therefore, for instance, sound goes around corners, and shadows are not sharp-edged.  The angle of diffraction is related to the wavelength, so the larger the wavelength, the greater is the diffraction.


[image: image316.wmf]l

q

µ

sin


Passing through a narrow opening, the diffraction depends on the size of the opening relative to the wavelength.  The same is true of small objects, such as dust grains or water droplets.  If the wavelength is much smaller than the size of the opening/object, little diffraction occurs.

Now consider more closely light passing through a narrow opening.  After passing through, the light spreads out from all parts of the opening (say it’s a narrow slit).  Light rays from different parts of the slit will superimpose and interfere with each other.  Take two representative rays interfering at the point P.  They will interfere destructively if the difference in their path lengths to point P equals an integer multiple of one-half wavelength.  The peak of one wave will coincide with the trough of the other.  
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These are the locations of the dark fringes.

b.
Two-slit interference
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Once again, we consider the difference in path length for rays from the centers of the two slits.
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For destructive interference to occur, at the location y, 
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For constructive interference at the point y,
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Take the latter case, 
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These are the locations of uniformly spaced bright fringes.  However, notice that a diffraction pattern is superimposed on the interference pattern.  This occurs because each of the two slits has a finite width.
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The locations of the diffraction and interference fringes depend upon the wavelength.  Therefore, the fringes of light that is not monochromatic will be separated, or dispersed into a spectrum.  Passing light through two or more slits in this way disperses the colours, just as does a prism, though by a different physical mechanism.

3.
Quantized Waves

a.
Photoelectric effect

When light is shone on a metal plate, electrons in the metal absorb energy and may be ejected (or liberated) from the metal.  These are called photoelectrons.  The ejection of electrons from a metal by light is called the photoelectric effect.  Investigation of the photoelectric effect reveals the following.
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The number of photoelectrons depends on the intensity of the light, but if the frequency is below a certain threshold, fo, then no photoelectrons are produced, no matter how great the intensity.  Increasing the intensity, at a fixed frequency, increases the number of photoelectrons, but not their average kinetic energy (that’s how much energy they have left after escaping from the metal).  On the other hand, as shown in the graph above, if the frequency of the incident light is increased, then the maximum kinetic energy of the photoelectrons is larger.

The conclusions are, i) light comes in photons with energy E = hf and ii) a photon is wholly absorbed or not absorbed at all and iii) a photon is not shared between two electrons; if the photon delivers more energy than is needed to liberate a single electron, the single liberated electron has greater kinetic energy left over.

b.
Photons
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, where p is the momentum of the photon.

A photon is a particle that has no mass, but does have energy and momentum.  Having no mass, it travels at the speed of light.  There are other apparently massless particles, called neutrinos, which also travel at the speed of light.  While no massive particle can travel at or above the speed of light, the massless particles must travel at the speed of light, no faster and no slower.  The photon has the properties of waves—polarization & diffraction, etc., yet has properties of particles as well—has momentum and kinetic energy and undergoes collisions like particles.

c.
deBroglie

Material particles exhibit wave-like properties, too, especially diffraction and interference.  For instance, electron diffraction. . . . .

[image: image338.jpg](a) The diffraction pattern obtained by passing
foil.

(b) The diffraction pattern obtained by passing a beam of electrons through the
same foil.

Figure 27-4 A direct comparison of electron diffraction and x-ray diffraction.
The wavelengths are the same in both cases. (From the P.S.S, Im Matter Waves.)





DeBroglie proposed that a wavelength can be associated with a matter particle, such that 
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, where p is the particle’s translational momentum.  The observed pattern formed by diffracted electrons matches this wavelength.

Evidently, the distinction between quantized waves and material particles is not a real distinction.  For macroscopic massive objects, the wavelength is very, very short, so we do not observe wave-like effects with our unaided sight.

III.
Atoms

A.
Structure of the Atom

1.
Bohr Model

a.
Orbits

PreQuantum Mechanics model for the Hydrogen atom.


i.  stable circular orbits


ii. Coulomb’s “Law” between the proton & electron


iii. quantized orbital angular moment, based on standing deBroglie waves fitted in 
the circumference of the orbit—get discrete energy levels.


iv. transitions occur upon absorption or emission of a photon, 
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Applying Newton’s 2nd “Law” to the electron in its uniform circular orbit,
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We need the orbital speed for the angular momentum, which is set equal to an integer multiple of 
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This determines the “allowed” orbits for the electron.  Next, the total mechanical energy of the electron is 
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Finally, we substitute the allowed orbital radii into the expression for the energy to obtain the discrete energy levels.
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For other atoms, having more electrons, of course the energy levels are more numerous and their spectra more complicated.  Still, the spectrum of each chemical element or compound is unique.

b.
Spectra

When the electron makes a transition from one orbit to another, its energy increases (decreases), and a photon is absorbed (emitted).  The wavelength of that photon is determined by the magnitude of the energy change.
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Experimentally, the emission spectrum of the Hydrogen atom had been observed to follow the following pattern.
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The Rydberg Constant was evaluated by fitting to the data:  
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.  The Bohr Model for the Hydrogen atom exactly matches the experimental observations of the Hydrogen spectrum.  
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However, subsequent more detailed observations of atomic spectra revealed features that the Bohr model did not include.  Only the quantum mechanical description of the atom can “explain” all the features of atomic spectra.  The picture of an atom as a tiny solar system is not in the end wholly realistic.  However, the Bohr Model introduces the notion of discrete energy levels for the electrons in atoms.

2.
Nucleus

a.
Nucleons

protons & neutrons

strong nuclear force

stability, instability

b.
Radioactivity

alpha, beta, gamma

decay

penetration

dose

B.
Subatomic

1.
Leptons & Quarks 

a.
Leptons

b.
Quarks

c.


2.
Hadrons

a.
Mesons

b.
Baryons

c.


3.
Anti-Matter
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Step 2: Starting Equation
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Step 2: Starting Equation






F3x = F31,x + F32,x = 120 N + 0 N = 120 N

F3y = F31,y + F32,y = -70 N + 330 N = 260 N





F3

The net force is the vector sum of all the forces on Q3.
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Step 3: Complete the Math
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Example: calculate the electric field at the electron’s distance away from the proton in a hydrogen atom (5.3x10-11 m).

For comparison, air begins to break down and conduct electricity at about 30 kV/cm, or 3x106 V/m.
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Example: an electron moving with velocity v0 in the positive x direction enters a region of uniform electric field that makes a right angle with the electron’s initial velocity. Express the position and velocity of the electron as a function of time.
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To be completed at the blackboard.
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(from diagram)

 F32,y = 330 N and F32,x = 0 N.
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Step 3: Replace Generic Quantities by Specifics
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Draw and label forces (only those on Q3).

Draw components of forces which are not along axes.
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Draw a representative sketch—done.



Draw and label relevant quantities—done.



Draw axes, showing origin and directions—done.
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 F31,x = +120 N and F31,y = -70 N.
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Step 3 (continued)

r32=30 cm

r31=60 cm
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