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I.
First “Law” of Thermodynamics

A.
Temperature  Sec 1.1
1.
Energy

a. Definition of energy

Energy is a fundamental physical concept.  My favorite dictionary gives as its 4th definition of energy: 4. Physics.  Capacity for performing work.  So, now we go to the W section for the 13th definition of work: 13. Mech.  The transference of energy by a process involving the motion of the point of application of a force, as when there is movement against a resisting force or when a body is given acceleration; it is measured by the product of the force and the displacement of its point of application in the line of action.  [How about the definition of work number 10. The foam or froth caused by fermentation, as in cider, in making vinegar, etc.]

That definition of work is adequate as a definition of mechanical work, but that definition of the word energy is nearly useless.  Of course, that’s what dictionaries do, define words in terms of other words in endless circles—they are about usages more than meanings.  A fundamental concept cannot be defined in terms of other concepts; that is what fundamental means.  

b. Conservation of energy

We can list the forms that energy might take.  In effect, we are saying that if such and such happens in or to a system, then the energy of the system changes.  There is potential energy, which is related to the positions of parts of the system.  There is kinetic energy, which is related to the movements of parts of the system.  There is rest energy, which is related to the amount of matter in the system.  There is electromagnetic energy, chemical energy, and nuclear energy, and more.  

We find that for an isolated system, the total amount of energy in the system does not change.  Within the system, energy may change from one form to another, but the total energy of all forms is a conserved quantity.  Now, if a system is not isolated from the rest of the universe, energy may be transferred into or out of the system, so the total energy of such a system may rise or fall.

2.
Thermal Equilibrium

a. Temperature

Consider two objects, each consisting of a very large number of atoms and/or molecules.  Here, very large means at least several multiples of Avogadro’s Number of particles.  We call such an object a macroscopic object.  Consider that these two objects (they may be two blocks of aluminum, for instance, though they need not be the same material—they might be aluminum and wood, or anything) are isolated from the rest of the universe, but are in contact with each other.  
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We observe that energy flows spontaneously from one block (A) to the other (B).  We say that block A has a higher temperature than block B.  In fact, we say that the energy flow occurs because the blocks have different temperatures.  We further observe that after the lapse of some time, called the relaxation time, the flow of energy from A to B ceases, after which there is zero net transfer of energy between the blocks.  At this point the two blocks are in thermal equilibrium with each other, and we would say that they have the same temperature.

b. Heat

The word heat refers to energy that is transferred, or energy that flows, spontaneously by virtue of a difference in temperature.  We often say heat flows into a system or out of a system, as for instance heat flowed from block A to block B above.  It is incorrect to say that heat resides in a system, or that a system contains a certain amount of heat.

There are three mechanisms of energy transfer: conduction, convection, and radiation.  Two objects, or two systems, are said to be in contact if energy can flow from one to the other.  The most obvious example is two aluminum blocks sitting side by side, literally touching.  However, another example is the Sun and the Earth, exchanging energy by radiation.  The Sun has the higher temperature, so there is a net flow of energy from the Sun to the Earth.  The Sun and the Earth are in contact.

c. Zeroth “Law” of Thermodynamics

Two systems in thermal equilibrium with each other have the same temperature.  Clearly, if we consider three systems, A, B, & C, if A & B are in thermal equilibrium, and A & C are in thermal equilibrium, then B & C are also in thermal equilibrium, and all three have the same temperature.  
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3.
Thermometers

a. Temperature scales

What matter are temperature differences.  We can feel that one object is hotter than another, but we would like to have a quantitative measure of temperature.  A number of temperature scales have been devised, based on the temperature difference between two easily recognized conditions, such as the freezing and boiling of water.  Beyond that, the definition of a degree of temperature is more or less arbitrary.  The Fahrenheit scale has 180 degrees between the freezing and boiling points, while the Celsius scale has 100.   Naturally, we find 100 more convenient than 180.  On the other hand, it turns out that the freezing and boiling points of water are affected by other variables, particularly air pressure.  Perhaps some form of absolute scale would be more useful.  Such a scale is the Kelvin scale, called also the absolute temperature scale.  The temperature at which the pressure of a dilute gas at fixed volume would go to zero is called the absolute zero temperature.  Kelvin temperatures are measured up from that lowest limit.  The unit of absolute temperature is the kelvin (K), equal in size to a degree Celsius.  It turns out that  0 K = -273.15 oC.  [The text continues to label non-absolute temperatures with the degree symbol: oC, etc., as does the introductory University Physics textbook.  The latter also claims that temperature intervals are labeled with the degree symbol following the letter, as Co.  That’s silly.]

b. Devices

Devices to measure temperature take advantage of a thermal property of matter—material substances expand or contract with changes in temperature.  The electrical conductivity of numerous materials changes with temperature.  In each case, the thermometer must itself be brought into thermal equilibrium with the system, so that the system and the thermometer are at the same temperature.  We read a number from the thermometer scale, and impute that value to the temperature of the system.  There are bulb thermometers, and bi-metallic strip thermometers, and gas thermometers, and thermometers that detect the radiation emitted by a surface.  All these must be calibrated, and all have limitations on their accuracies and reliabilities and consistencies.

B.
Work

1.
First “Law” of Thermodynamics  Sec 1.4

a. Work

Heat is defined as the spontaneous flow of energy into or out of a system caused by a difference in temperature between the system and its surroundings, or between two objects whose temperatures are different.  Any other transfer of energy into or out of a system is called work.  Work takes many forms, moving a piston, or stirring, or running an electrical current through a resistance.  Work is the non-spontaneous transfer of energy.  Question: is lighting a Bunsen burner under a beaker of water work?  The hot gasses of the flame are in contact with the beaker, so that’s heat.  But, the gases are made hot by combustion, so that’s work.

b. Internal energy

There are two ways, then, that the total energy inside a system may change—heat and/or work.  We use the term internal energy for the total energy inside a system, and the symbol U.  Q and W will stand for heat and work, respectively.  Energy conservation gives us the First “Law” of Thermodynamics:  
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Now, we have to be careful with the algebraic signs.  In this case, Q is positive as the heat entering the system, and W is positive as the work done on the system.  So a positive Q and a positive W both cause an increase of internal energy, U.

2.
Compressive Work  Sec 1.5
a. PV diagrams

Consider a system enclosed in a cylinder oriented along the x-axis, with a moveable piston at one end.  The piston has a cross sectional area A in contact with the system.  We may as well imagine the system is a volume of gas, though it may be liquid or solid.  A force applied to the piston from right to left (-x direction) applies a pressure on the gas of 
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  If the displacement is slow enough, the system can adjust so that the pressure is uniform over the area of the piston.  In that case, called quasistatic, the work becomes 
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Now it is quite possible, even likely, that the pressure will change as the volume changes.  So we imagine the compression (or expansion) occurring in infinitesimal steps, in which case the work becomes an integral:
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Naturally, to carry out the integral, we need to have a specific functional form for P(V).  On a PV diagram, then, the work is the area under the P(V) curve.  In addition, the P(V) curve is traversed in a particular direction—compression or expansion, so the work will be positive or negative accordingly.  Notice over a closed path on a PV diagram the work is not necessarily zero.
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b. Internal energy of the Ideal Gas  Sec 1.2
As an example of computing compressive work, consider an ideal gas.  But first, we need to address the issue of the internal energy of an ideal gas.  Begin with the empirical equation of state:  
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.  In an ideal gas, the particles do not interact with each other.  They interact with the walls of a container only to collide elastically with them.  The Boltzmann Constant is 
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; N is the number of particles in the system, n is the number of moles in the system.
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On the microscopic level, the atoms of the gas collide from time to time with the walls of the container.  Let us consider a single atom, as shown in the figure above.  It collides elastically with the wall of the container and experiences a change in momentum 
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.  That is, the wall exerts a force on the atom in the minus x direction.  The atom exerts an equal and opposite force on the wall in the positive x direction.  The time-averaged force exerted by a single atom on the wall is 
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.  Next, the pressure, P, is the force averaged over the area of the wall:  
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, where V is the volume of the container.  Normally, there are many atoms in the gas, say N of them.  Each atom has a different velocity.  Therefore, 
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, where 
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 is the square of the x-component of velocity, averaged over the N atoms.  Finally, we invoke the ideal gas law, 
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The translational kinetic energy of one atom is 
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For an ideal gas of spherical particles (having no internal structure) there is no potential energy and the internal energy is just the kinetic energy.  


[image: image29.wmf]NkT

NfkT

U

2

3

2

1

=

=


c. Isothermal & adiabatic processes

Imagine a system in thermal contact with its environment.  The environment is much larger than the system of interest, so that heat flow into or out of the system has no effect on the temperature of the environment.  We speak of the system being in contact with a heat bath so that no matter what happens to the system, its temperature remains constant.  If such a system is compressed slowly enough, its temperature is unchanged during the compression.  The system is compressed isothermally.  As an example, consider an ideal gas:
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On the other hand, the compression may be so fast that no heat is exchanged with the environment (or, the system is isolated from the environment) so that Q = 0.  Such a process is adiabatic.  Naturally, the temperature of the system will increase.  Staying with the example of an ideal gas,
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[Notice that the text uses f for final and for degrees of freedom.]

Substituting for T with the ideal gas law, we can write 
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.  That exponent of V is called the adiabatic exponent, 
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.  In general, 
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An isotherm is a curve of constant temperature, T, on the PV diagram.  An arrow indicates the direction that the system is changing with time.  For an ideal gas, an isotherm is parabolic, since 
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3.
Other Works

In our discussion of energy conservation, we spoke of work as being any energy flow into or out of the system that was not heat.  We spoke of compressive work (sometimes called piston work) and “all other forms of work.”  The all other forms of work included stirring (called shaft work) and combustion and electrical currents and friction.  It would also include any work done by external forces beyond the compressive work, particularly work done by the force of gravity.  We also have been assuming that the center of mass of the system is not moving, so there was no kinetic energy associated with translation of the entire system.  A general form of the First “Law” of Thermodynamics ought to include all the energy of the system, not only its internal energy.  Thus for instance, the total energy of a system might be 
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a. Steady flow process

We might consider a situation in which a fluid is flowing steadily without friction, but with heat flow into the fluid and a change in elevation and changes in volume and pressure and some stirring.
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In engineering real devices, all the various sources of work have to be taken into account.  In any specific device, some works can be neglected and other works not.

b. The turbine

In a turbine, a fluid flows through a pipe or tube so quickly that Q = 0, and normally the entry and exit heights are virtually the same.  In the case of an electrical generator, the moving fluid turns a fan, so that the shaft work is negative.  The energy balance equation for a volume element of the fluid having a mass, M, would look something like this:
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An equation like this tells us how to design our turbine to maximize the shaft work.  

c. Bernoulli’s Equation

Suppose both Q and Wshaft are zero.  
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If the fluid is incompressible, then the volume is constant, and we can divide through by V to obtain Bernoulli’s Equation.  The internal energy is also constant because Q = 0 and no compressive work is done.  [
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C.
Heat Capacity  Sec 1.6
1.
Changing Temperature

a. Definition

By definition, the heat capacity of an object is 
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b. Constant pressure heat capacity

If pressure is constant, then 
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The second term on the right is the energy expended to expand the system, rather than increase the temperature.

c. Constant volume heat capacity
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2.
Heat Capacity and Degrees of Freedom

a. Degrees of freedom

A degree of freedom is essentially a variable whose value may change.  In the case of a physical system, the positions of the particles that comprise the system are degrees of freedom.  For a single particle in 3-dimensional space, there are three degrees of freedom.  Three coordinates are required to specify its location.  We are particularly interested in variables that determine the energy of the system—the velocities determine the kinetic energy, the positions determine the potential energy, etc.  In other words, we expect to associate some kinetic energy and some potential energy with each degree of freedom.

In effect, this text treats the kinetic and potential energies as degrees of freedom.  An isolated single particle, having no internal structure, but able to move in three-dimensional space, has three degrees of freedom which may have energy associated with them:  the three components of its velocity.  Since the particle is not interacting with any other particle, we do not count its position coordinates as degrees of freedom.  On the other hand, a three-dimensional harmonic oscillator has potential energy as well as kinetic energy, so it has 6 degrees of freedom.  Molecules in a gas have more degrees of freedom than simple spherical particles.  A molecule can rotate as well as translate and its constituent parts can vibrate.  A water molecule is comprised of three atoms, arranged in the shape of a triangle.  The molecule can translate in three dimensions, and rotate around three different axes.  That’s 3+3 = 6 degrees of freedom for an isolated water molecule.  Within the molecules, the atoms can vibrate relative to the center of mass in three distinct ways, or modes.  That’s another 2x3 = 6 degrees of freedom.  Now, finally if the water molecule is interacting with other water molecules, then there is interaction between the molecules, and the degrees of freedom are 2x3+2x3+2x3 = 18.  Notice that if we regard the molecule as three interacting atoms, not as a rigid shape, there are 3x2x3 = 18 degrees of freedom.

A system of N particles, such as a solid made of N harmonic oscillators, has 6 degrees of freedom per particle for a total of 6N degrees of freedom.  

The idea is that each degree of freedom, as it were, contains some energy.  The total internal energy of a system is the sum of all the energies of all the degrees of freedom.  Conversely, the amount of energy that may be transferred into a system is affected by how many degrees of freedom the system has.  

b. Exciting a degree of freedom

Consider a harmonic oscillator.  The energy required to raise the HO from its ground state to the first excited state is 
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 is the oscillator frequency.  If the system temperature is such that 
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, then that oscillator will never be excited.  It’s as if that degree of freedom does not exist.   We say that the degree of freedom has been frozen out.

The Equipartition Theorem says that the average energy in each quadratic degree of freedom is 
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.  By quadratic degree of freedom, we mean that the kinetic and potential energy terms all depend on the position and velocity components squared.  If that is the case, the internal energy of a system of N harmonic oscillators in a solid is 
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where f is the number of degrees of freedom per particle, which we would expect to be 6.  From this, we obtain the constant volume heat capacity of Dulong-Petit, 
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This result is independent of temperature.  The measured heat capacity for a solid is not the same for all temperatures.  In fact, as temperature decreases, the heat capacity decreases toward zero.  Working backward, it would appear that as temperature decreases, the number of degrees of freedom available decreases.  At low temperature, energy cannot be put into the degrees of freedom that have been frozen out.  The reason is that the quantity kT is smaller than the spacing between discrete energy levels.  This applies not only to a solid.  For instance, one of the intramolecular vibrational modes of the water molecule is shown here in the sketch.  
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Its frequency is in the neighborhood of 1014 Hz.  Assuming harmonic vibration, the energy level spacing for that mode is about 
[image: image59.wmf]eV

41

.

0

Hz

10

1

sec

eV

10

136

.

4

14

15

=

´

´

×

´

=

-

n

h

.On the other hand, at T = 300 K, the quantity 
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; we would not expect the intramolecular modes to be excitable, as it were, at 300K.

As an example of computing the constant volume heat capacity of something other than an ideal gas, consider liquid water and ice.  An effective potential energy function is assumed to represent the interaction between water molecules.  The total kinetic and potential energy is computed at a range of temperatures, with the volume kept fixed.  
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FIG. 2. Intermolecular energy E. The average intermolecular energy con-
sists of the average intermolecular potential energy per molecule added to
2/3 of the average kinetic energy per molecule. The broken line indicates the
slope used toestimate C, for ice; the solid line indicates the slope used for C,
of water. The point ( 4 ) represents a sample cooled to 310 K from 500 K.
The statistical uncertainty in E is about 0.2% for the extended runs, about
29 for the short (2 ps) runs.




The CV is estimated by numerically evaluating the slope of the graph:  
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.  In this set of molecular dynamics simulations, the intermolecular energy, E, leaves out the kinetic energies of the hydrogen and oxygen atoms with respect to the molecular center of mass as well as the intramolecular potential energies—that is, the degrees of freedom of the atoms within each molecule, such as the vibrational mode shown above, are frozen out.  The results shown on the graph are 
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 for the liquid phase and 
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 for the solid phase.  The purpose of the study was to test the effective potential function—would it show a melting transition at the correct temperature, and would it give correct heat capacities.
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II.
Second “Law” of Thermodynamics

A.
Combinatorics

1.
Two State Systems   Sec 2.1
a. Micro- and macro-states

Consider a system of three coins, as described in the text.  The macrostate of this system is described by the number of heads facing up.  There are four such macrostates, labeled 0, 1, 2, & 3.  We might even call these energy levels 0, 1, 2, & 3.

Specifying the orientation of each individual coin defines a microstate.  We can list the microstates, using H for heads and T for tails:  TTT, HTT, THT, TTH, HHT, HTH, THH, HHH.  

Now, we sort the microstates into the macrostate energy levels.  

	energy level
	microstates
	multiplicity, 
[image: image65.wmf]W



	0
	TTT
	1

	1
	HTT, THT, TTH
	3

	2
	HHT, HTH, THH
	3

	3
	HHH
	1


The multiplicity is the number of distinct ways that a specified macrostate can be realized.  The total multiplicity of the system is the total of all the possible microstates.  For these three coins, that’s 
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b. Two-state paramagnet

Consider a large number of non-interacting magnetic dipole moments, let’s say N of them.  These dipoles may point in one of only two ways: up or down.  If an external uniform magnetic field is applied, say in the up direction, each dipole will experience a torque tending to rotate it to the up direction also.  That is to say, parallel alignment with the external field is a lower energy state than is anti-parallel alignment.  

The energy of the system is characterized by the number of dipoles aligned with the external field, q.  But, we don’t care which q dipoles of the N total are in the up state.  Having q dipoles up specifies the energy macrostate, which may be realized by the selection of any q dipoles out of N to be up.  The number of microstates for each macrostate is just the number of combinations, the number of ways of choosing q objects from a collection of N objects.
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Now, what are the odds of observing this paramagnet to be in a particular energy macrostate?  Assuming every microstate is equally likely, then we have 
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Notice that the total multiplicity is 
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 because each dipole has only two possible states.

Here is a microstate for a system of N = 10 dipoles, with q = 6 (6 dipoles point up).
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The probability function, P(q), for this system looks like this:
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The most probable macrostate has one-half the dipoles pointed up, q = 5.

2.
Einstein Solid   Sec 2.2, 2.3
a. More than two states 

A harmonic oscillator has energy levels that are uniformly spaced in steps of 
[image: image72.wmf]n
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, where h is Planck’s Constant and 
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 is the frequency of the oscillator.  We imagine a solid made of N such harmonic oscillators.  The total energy of the solid is 
[image: image74.wmf]n

qh

, where q is an integer which in this case may well be greater than N.  As shown in the text, the multiplicity of the macrostate having energy 
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 is the number of ways q items can be selected from q + N – 1 items.  
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Then 
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 is the sum of all the 
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b. Interacting systems   
We are interested in the transfer of energy from one such Einstein solid to another.  Now we want the multiplicity of q energy units distributed over both systems.
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Let’s say we have NA, NB, qA, and qB, such that 
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.  The total multiplicity for the two systems in contact is 
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Assuming that all microstates are equally probable, then the macrostate having the greatest multiplicity is the most probable to be observed.  As q, NA, and NB are made larger, the multiplicity curve is taller, and more narrowly peaked at (if NA = NB) 
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.  Then over time, as energy is exchanged more or less randomly between oscillators in the two systems, there will be a net flow of energy from system B to system A, from a macrostate of lower multiplicity to a macrostate of greater multiplicity.

The text has one numerical example on page 57.  In that example, 
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The probability peaks at about 
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[I did the calculation of 
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 using the COMBIN function in Excel.]

As we increase the numbers, the 
[image: image100.wmf]W

s become very large very quickly, as illustrated by the text example on pages 58 & 59.

B.
Entropy 

1.
Large Systems   Sec 2.4
a. Very large numbers

Macroscopic systems contain multiples of Avogadro’s number, 
[image: image101.wmf]23

10

02

.

6

´

, perhaps many, many multiples.  The factorials of such large numbers are even larger—very large numbers.  We’ll use Stirling’s Approximation to evaluate the factorials:
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Ultimately, we will want the logarithm of N!:  
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b. Multiplicity function

Consider an Einstein solid with a large number of oscillators, N, and energy units, q.

The multiplicity function is 
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Take the logarithm, using Stirling’s formula.
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Now further assume that q >> N.  In that case, 
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The 
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c. Interacting systems

The multiplicity function for a pair of interacting Einstein solids is the product of their separate multiplicity functions.  Let’s say 
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.  If we were to graph this function vs. qA, what would it look like?  Firstly, we expect a peak at 
[image: image113.wmf]2

q

q

A

=

 with a height of 
[image: image114.wmf]N

N

q

N

e

2

2

max

2

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

W

.  That’s a very large number.  How about the width of the curve?  In the text, the author shows that the curve is a Gaussian:  
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.  Now, this is a large number, but compared to the scale of the horizontal axis 
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, that peak is very narrow, since N is a large number in itself.  That is, the half width of the peak is 
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 of the whole range of the independent variable.
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The upshot is that as N and q become large, the multiplicity function peak becomes narrower and narrower.  The most probable macrostate becomes more and more probable relative to the other possible macrostates.  Put another way, fluctuations from the most probable macrostate are very small in large systems.

2.
Second “Law”   Sec 2.6
a. Definition of entropy

We define the entropy of a system to be 
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The total entropy of two interacting systems, such as the two Einstein solids above, is 
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The Second “Law” of Thermodynamics says:  Systems tend to evolve in the direction of increasing multiplicity.  That is, entropy tends to increase.  This is simply because the macrostate of maximum multiplicity is the most probable to be observed by the time the system has reached thermal equilibrium.

b. Irreversible

The concept of entropy was introduced originally to explain why certain processes only went one way spontaneously.  When heat enters a system at temperature, T, its entropy increases by 
[image: image125.wmf]T
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.  When heat leaves a system, the system’s entropy decreases.

Consider two identical blocks of aluminum, initially one hotter than the other.  When brought into thermal contact, heat will flow from the warmer block(A) to the cooler(B) until they have reached the same temperature.  The total entropy of the two blocks will have increased.  Incrementally, 
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.  In effect, because TA is greater than TB, the entropy of block A decreases less than the entropy of block B increases.

Processes that create new entropy cannot happen spontaneously in reverse.  Heat flow from a warmer object to a cooler object creates entropy, and is irreversible.  Mixing two different gases creates entropy, and is irreversible.  Rapid expansion or compression creates entropy.  On the other hand quasistatic volume change can be reversible, depending what other processes are taking place at the same time.  Very slow heat flow produces very little new entropy and may be regarded as practically reversible.

An irreversible process may be reversed by doing work on the system, but that also increases the total amount of entropy in the universe.  

C.
Creating Entropy

1.
Temperature   Sec 3.1, 3.2
a. Thermal equilibrium

When two objects are in thermal equilibrium, their temperatures are the same.  According to the Second “Law”, their total entropy is at its maximum.  

Consider two objects in contact, exchanging energy.  The total energy of the two objects is fixed.  At equilibrium,
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The quantity 
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 has units of K-1, so perhaps we can define the temperature in terms of the entropy as 
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b. Heat capacities

We cannot measure entropy directly, but we can measure changes in entropy indirectly, through the heat capacity.  For instance, if no work is being done on the system,
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Of course, we need to know CV as a function of T.  This is obtained by measuring Q or U vs. T.  In general, the heat capacity decreases with decreasing temperature.  At higher temperatures, the heat capacity approaches the constant 
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 (Dulong-Petit).  For instance, the CV vs. T for a monatomic substance would look like this:
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The Third “Law” of Thermodynamics says that 
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, or alternatively, that S = 0 when T = 0K.  In reality, there remains residual entropy in a system at T = 0K—near absolute zero, the relaxation time for the system to settle into its very lowest energy state is very, very long.

Now notice, if indeed 
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, then absolute zero can not be attained in a finite number of steps, since 
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.  It’s like the famous example of approaching a wall in a series of steps, each one half the previous step.  

For example, let us say that we wish to cool an ideal gas to absolute zero.  We’d have to “get rid” of the entropy in the gas in a series of steps.

i) isothermal compression—heat and entropy is transferred to a reservoir

ii) adiabatic expansion—temperature decreases, entropy is constant, Q = 0

repeat

Now if we were to graph these S(T) points we have generated we would see two curves.  But the curves are not parallel; they appear to converge at T = 0.  As a result, the 
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 gets smaller for each successive two-stage step, the closer we get to T = 0.
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In practice, a real gas would condense at some point.  The text describes three real-life high-tech coolers.  In any case, there will be a series of ever smaller steps downward between converging curves on the S(T) graph, toward absolute zero.

2.
Pressure   Sec 3.4
a. Mechanical equilibrium

Consider two systems whose volumes can change as they interact.  An example might be two gases separated by a moveable membrane.  The total energy and volume of the two systems are fixed, but the systems may exchange energy and volume.  Therefore, the entropy is a function of the volumes as well as the internal energies.  However, we will be keeping the numbers of particles in each system fixed.
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At the equilibrium point, 
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As we did with temperature, we can identify the pressure with the derivative of entropy with volume, thusly:  
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b. Thermodynamic identity

Now if we envision a system whose internal energy and volume are changing, we would write the change in entropy (a function of both U and of V) as follows:
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c. Creating entropy with mechanical work

Remember that compressive work (
[image: image147.wmf]PdV

) is just one form of work.  If the compression is slow, and no other form of work is done on the system, then the volume change is quasistatic, and 
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.  In such a case, we are allowed to combine the First “Law” with the thermodynamic identity to obtain


[image: image149.wmf]TdS

Q

=

.

But, if the work done on the system is greater than 
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.  In other words, the amount of entropy created in the system is more than that accounted for by the heat flow into the system.  This might happen, for instance, with a compression that occurs faster than the pressure can equalize throughout the volume of the system.  It will happen if other forms of work are being done, such as mixing, or stirring.  In a similar vein, if a gas is allowed to expand freely into a vacuum, no work is done by the gas, and no heat flows into or out of the gas.  Yet the gas is occupying a larger volume, so its entropy is increased.

3.
Chemical Potential   Sec 3.5
Now consider a case in which the systems can exchange particles as well as energy and volume.

a. Diffusive equilibrium
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Define the chemical potential as 
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.  Evidently, the minus sign is attached so that particles will tend to diffuse from higher toward lower chemical potential.

b. Generalized thermodynamic identity

For infinitesimal changes in the system,
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This equation contains within it all three of the partial-derivative formulas for T, P and for 
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.  For instance, assume that entropy and volume are fixed.  Then the thermodynamic identity says 
[image: image157.wmf]dN

dU

m

=

, whence we can write 
[image: image158.wmf]V

S

N

U

,

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

=

m

.  To apply the partial-derivative formulae to a particular case, we need specific expressions for the interdependence of the variables, i.e., U as a function of N.  

4.
Expanding & Mixing  Sec 2.6 
a. Free expansion

Imagine a container of volume 2V, isolated from its surroundings, and with a partition that divides the container in half.  An ideal gas is confined to one side of the container.  The gas is in equilibrium, with temperature T and Pressure P.  Now, imagine removing the partition.  Over time, the gas molecules will diffuse to fill the larger volume.  
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However, in expanding the gas does no work, hence the phrase free expansion.  Because the container is isolated, no heat flows into or out of the gas, nor does the number of molecules, N, change..
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However, the entropy increases.  
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[The expression for the entropy of an ideal gas is derived in Sec. IV B 3.  It is 
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, where vQ is a constant.]
b. Entropy of mixing

In a similar vein, we might imagine a container divided into two chambers, each with a different ideal gas in it.  When the partition is removed, both gases diffuse to fill the larger volume.  Since the gases are ideal, one gas doesn’t really “notice” the presence of the other as they mix.  The entropy of both gases increases, so the entropy change of the whole system is 
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, assuming of course that we started with the same numbers of molecules of both gases, etc.
III.
Processes

A.
Cyclic Processes

1.
Heat Engines & Heat Pumps  Sec 4.1, 4.2
A heat engine is a device that absorbs heat from a reservoir and converts part of it to work.  The engine carries a working substance through a PVT cycle, returning to the state at which it starts.  It expels “waste” heat into a cold reservoir, or into its environment.  It must do this in order that the entropy of the engine itself does not increase with every cycle.
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a. Efficiency

The efficiency of the heat engine is defined as the ratio of work done by the engine to the heat absorbed by the engine.
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We’d like to express e in terms of the temperatures of the hot and cold reservoirs.  The First “Law” says that 
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[image: image168.wmf]h

c

T

T

e

-

£

1

.  Firstly, notice that e cannot be greater than one.  Secondly, e cannot be one unless Tc = 0 K, which cannot be achieved.  Thirdly, 
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 is the greatest e can be—in practice, e is less than the theoretical limit, since always 
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b. Carnot cycle

Can a cycle be devised for which 
[image: image171.wmf]h

c

T

T

e

-

=

1

?  That’s the Carnot cycle, which uses a gas as the working substance.
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i) the gas absorbs heat from the hot reservoir.  To minimize dS, we need 
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; the gas is allowed to expand isothermally in order to maintain the 
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ii) the gas expands adiabatically, doing work, and cools from Th to Tc.

iii) the gas is compressed isothermally, during which step heat is transferred to the cold reservoir. 

iv) the gas is compressed adiabatically, and warms from Tc to Th.

Now, for the total change in entropy to be very small, the temperature differences between the gas and the reservoirs must be very small.  But that means that the heat transfers are very slooow.  Therefore, the Carnot cycle is not very useful in producing useful work. [Empirically, the rate at which heat flows is proportional to the temperature difference — 
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c. Heat pump

The purpose of a heat pump is to transport energy from a cold reservoir to a hot one by doing work on the working substance.  The work is necessary because the temperature of the working fluid must be raised above that of the hot reservoir in order for heat to flow in the desired direction.  Likewise, at the other side of the cycle the working fluid must be made colder than the cold reservoir.

Rather than efficiency, the corresponding parameter for a heat pump is the coefficient of performance,
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The First “Law” says 
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.  A Carnot cycle running in reverse will give the maximum COP.  

2.
Otto, Diesel, & Rankine  Sec 4.3
Real heat engines need to produce work at a more rapid rate than a Carnot engine.  Consequently, their efficiencies are lower than that of a Carnot engine.  Of course, real engines do not achieve even their theoretical efficiencies due to friction and conductive heat loss through the cylinder walls and the like.

a. Otto cycle

The Otto cycle is the basis for the ordinary 4-stroke gasoline engine.  

i) air-fuel mixture is compressed adiabatically from V1 to V2; pressure rises from P1 to P2.

ii) air-fuel mixture is ignited, the pressure rises isochorically from P2 to P3.

iii) combustion products expand adiabatically from V2 to V1; pressure falls from P3 to P4.

iv) pressure falls isochorically from P4 to P1.
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The temperatures also change from step to step.  The efficiency is given by
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The quotient 
[image: image183.wmf]2
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 is the compression ratio.  The greater the compression ratio, the greater is the efficiency of the engine.  However, so is T3 greater.  If T3 is too great, the air-fuel mixture will ignite prematurely, before the piston reaches the top of its stroke.  This reduces power, and damages the piston and cylinder.  Up to a point, chemical additives to the fuel can alleviate the premature detonation.

Notice that there is no hot reservoir per se; rather the heat source is the chemical energy released by the combustion of the fuel.

b. Diesel cycle

The Diesel cycle differs from the Otto cycle in that the air is first compressed adiabatically in the cylinder, then the fuel is injected into the hot air and ignited spontaneously, without need of a spark.  The fuel injection takes place as the piston has begun to move downward, so that constant pressure is maintained during the fuel injection.  Since the fuel is not in the cylinder during the compression, much higher compression ratios can be used, leading to greater efficiencies.
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c. Rankine cycle

In some ways the steam engine is a more nearly exact example of a heat engine than is the Otto engine.  No chemical reaction or combustion takes place within the working fluid, and at least in principle the working fluid is not replaced at the beginning of each cycle.

i) water is pumped to a high pressure into a boiler.

ii) the water is heated at constant pressure and changes to steam (water vapour).

iii) the steam expands adiabatically, driving a piston or a turbine, and cools and begins to condense.

iv) the partially cooled steam/water mixture is cooled further by contact with the cold reservoir.

[image: image185.png]Steom

)
// warer & Heam

\'




The efficiency of the steam engine is 
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 since the water is not compressed as it is pumped, and only a little energy is added to the water (e.g., it’s not accelerated).  So we look up the enthalpies on the tables of enthalpy & entropy vs. temperature & pressure—page 136.

d. Throttling and refrigerators  Sec 4.4
For a refrigerator to work, the temperature of the working fluid must be made less than that of the cold reservoir.  This is done through what is called a throttling process.  

The working fluid passes through a narrow opening from a region of high pressure into a region of low pressure.  In doing so, it expands adiabatically (Q = 0) and cools.  As the fluid expands, the negative potential energy of interaction among the atoms/molecules increases and the kinetic energy decreases.
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From the First “Law”
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In a dense gas or a liquid, 
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the gas/liquid cools.
Subsequently, the chilled fluid absorbs heat from the cold reservoir and vaporizes.  Therefore, the working fluid must be a substance with a low boiling point.  The compressor does the work of compressing the gas to raise its temperature, as well as maintains the pressure difference required for the throttle valve to work.

B.
Non-cyclic Processes or Thermodynamic Potentials

1.
Thermodynamic Potentials  Sec 5.1
A number of thermodynamic quantities have been defined—useful under differing conditions of fixed pressure, volume, temperature, particle number, etc.  These are the enthalpy, the Helmholtz free energy, and the Gibbs free energy.  Together with the internal energy, these are referred to as thermodynamic potentials.

a. Enthalpy  Sec 1.6
The total energy required to create a system of particles at sea level air pressure would include the expansive work done in displacing the air.  

We define the enthalpy to be 
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.  The enthalpy is useful when a change takes place in a system while pressure is constant.
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Now, if no other work is done, then 
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 exactly.  In practice, tables of measured enthalpies for various processes, usually chemical reactions or phase transitions are compiled.  The text mentions the enthalpy of formation for liquid water.  Evidently, when oxygen and hydrogen gases are combined to form a mole of liquid water, the change in enthalpy is -286 kJ.  In other words, burning hydrogen at constant pressure releases this much energy.

Efficiency of a steam engine:  
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.  Now, 
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 since the water is not compressed as it is pumped, and only a little energy is added to the water (it’s not accelerated).  So, we look up the enthalpies on tables of H & S vs. T & P—page 136.
PV diagram…………………………………………
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COP of refrigerators:  
[image: image199.wmf](

)

1

2

3

1

4

1

3

2

4

1

4

1

3

2

4

1

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Q

Q

Q

COP

c

h

c

-

-

=

+

-

-

-

=

-

-

-

-

=

-

=


PV diagram…………………………………………………
Problem 4-29
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From Table 4.3, 
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  At 12 bar, the boiling point is 46.3oC.
a) Pf = 1 bar and Hliquid = 16 kJ
    T = -26.4oC and Hgas = 231 kJ.
b)  Starting with all liquid at Pi, 
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b. Helmholtz

Let’s say the system is in contact with a heat bath, so that the temperature is constant.  The pressure may not be constant.  To create the system, some of its total energy can be taken from the environment in the form of heat.  So the total work required to create the system is not all of U, but less than U.  Define the Helmholtz Free Energy of the system as 
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Any change in a system at constant temperature will entail a change in F.
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Where W is all the work done on the system.  

c. Gibbs

Now, if the system is at constant pressure as well as constant temperature, then the extra work needed to create the system is the Gibbs Free Energy, 
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If pressure is constant, we use the Gibbs free energy:
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Again, W is the total work done on the system.

In a paragraph above, we burned some hydrogen.  The 286 kJ released could be used to run an Otto cycle for instance.  The theoretical efficiency of an Otto engine is about 56%.  So, at most 160 kJ are used to drive the car.  It’s possible to run that reaction in a more controlled way and extract electrical work, in a hydrogen fuel cell.
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 has to be expelled to the environment, and the efficiency of the fuel cell alone is 83%.  The fuel cell generates current which can run an electrical motor or charge a battery.  Of course, in both instances, there are numerous losses of energy along the way to driving the car.

d. Identities

If we envision infinitesimal changes in thermodynamic variables, we can derive thermodynamic identities for the thermodynamic potentials.  We have already, the thermodynamic identity for internal energy
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Now, consider the enthalpy, H.
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For instance, if dP = 0 and dN = 0, then we could write 
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, which is equivalent to the 
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 that we obtained earlier.

We can do the same for F and for G.
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From this equation we can derive relationships like 
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2.
Toward Equilibrium  Sec 5.2
a. System and its environment

An isolated system tends to evolve toward an equilibrium state of maximum entropy.  That is, any spontaneous rearrangements within the system increase the entropy of the system.  Now, consider a system which is in thermal contact with its environment.  The system will tend to evolve, by exchanging energy with the environment.  The entropy of the system may increase or decrease, but the total entropy of the universe increases in the process.

Let’s say that the system evolves toward equilibrium isothermally.  The environment is such a large reservoir of energy that it can exchange energy with the system without changing temperature.  It’s a heat bath.  The total change in entropy involved with an exchange of energy would be 
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Assuming the V and N for the environment are fixed, an recalling that dUR = - dU and T = TR , then
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The increase in total entropy under conditions of constant T, V, and N is equivalent to a decrease in the Helmholtz free energy of the system.

In a similar vein, if the system volume is not fixed, but the pressure is constant, then we have 
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The increase in total entropy under conditions of constant T, P, and N is equivalent to a decrease in the Gibbs free energy of the system.

	system condition
	system tendency

	isolated—constant U, T, V, & N
	entropy increases

	constant T and V and N
	Helmholtz free energy decreases

	constant T and P and N
	Gibbs free energy decreases


b. Extensive & Intensive

The several properties of a system can be divided into two classes—those that depend on the amount of mass in the system, and those that do not.  We imagine a system with volume V in equilibrium.  The system is characterized by its mass, number of particles, pressure, temperature, volume, chemical potential, density, entropy, enthalpy, internal energy, Helmholtz and Gibbs free energies.  Now imagine slicing the system in half, forming two identical systems with volumes V/2.  Some properties of the two systems are unchanged—temperature, pressure, density, and chemical potential.  These are the intensive properties.  The rest are extensive—they are halved when the original system was cut in half.

The usefulness of this concept is in checking the validity of thermodynamic relationships.  All the terms in a thermodynamic equation must be the same type, because an extensive quantity cannot be added to an intensive quantity.  The product of an intensive quantity and an extensive quantity is extensive.  On the other hand, dividing an extensive quantity by another yields an intensive quantity, as in mass divided by volume gives the density.

3.
Phase transformations  Sec 5.3

We are familiar with water, or carbon dioxide or alcohol changing from liquid to vapour, from solid to liquid, etc.  We are aware that some metals are liquid at room temperature while most are solid and melt if the temperature is much higher.  These are familiar phase changes.  

More generally, a phase transformation is a discontinuous change in the properties of a substance, not limited to changing physical structure from solid to liquid to gas, that takes place when PVT conditions are changed only slightly.

a. Phase diagram

Which phase of a substance is the stable phase depends on temperature and pressure.  A phase diagram is a plot showing the conditions under which each phase is the stable phase.

For something like water or carbon dioxide, the phase diagram is divided into three regions—the solid, liquid, and gas (vapour) regions.  If we trace the P,T values at which changes in phase take place, we trace the phase boundaries on the plot.  At those particular values of P,T the two phases can coexist in equilibrium.  At the triple point, all three phases coexist in equilibrium.  The pressure on a gas-liquid or gas-solid boundary is called the vapour pressure of the liquid or solid.
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Notice that the phase boundary between gas and liquid has an end point, called the critical point.  This signifies that at pressures and/or temperatures beyond the critical point there is no physical distinction between liquid and gas.  The density of the gas is so great and the thermal motion of the liquid is so great that gas and liquid are the same.

Other sorts of phase transformations are possible, as for instance at very high pressures there are different solid phases of ice.  Similarly for carbon, there is more than one solid phase—diamond and graphite.  Diamond is the stable phase at very high pressure while graphite is the more stable phase at sea level air pressure.  The glittery diamonds people pay so much to possess are ever so slowly changing into pencil lead.

Still other phase transformations are related not to pressure, but to magnetic field strength as in the case of ferromagnets and superconductors.

Here’s a phase diagram for water, showing the several solid phases.  They differ in crystal structure and density, as well as other properties such as electrical conductivity.
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D. Eisenberg & W. Kauzmann, The Structure and Properties of Water, Oxford Univ. Press, 1969.

The phase diagram for water shown in the text figure 5.11 is a teensy strip along the T axis near P = 0 on this figure.  [One bar is about one atmosphere of air pressure, so a kbar is 1000 atm.]

Here’s a phase diagram for a ferromagnet, subjected to an external magnetic field, 
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.  The phase boundary is just the straight segment along the T axis.  The segment ends at the critical point, at 
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b. van der Waals model

There are phases because the particles interact with each other, in contrast to an ideal gas.  The interactions are complicated (quantum mechanics), so we create simplified, effective models of the interparticle interactions in order to figure out what properties of the interactions lead to the observed phase diagrams.  For instance, the van der Waals model:

The model of a non-ideal gas is constructed as follows.  Firstly, the atoms have nonzero volume—they are not really point particles.  So, the volume of the system cannot go to zero, no matter how great the pressure or low the temperature.  The smallest V can possibly be, let’s say, is Nb.  It’s like shifting the origin from V = 0 to V – Nb = 0.  Secondly, the atoms exert forces on each other.  At short range, but not too short, the forces are attractive—the atoms tend to pull one another closer.  This has the tendency to reduce the pressure that the system exerts outward on its environment (or container).  We introduce a “correction” to the pressure that is proportional to the density 
[image: image225.wmf]÷

÷

ø

ö

ç

ç

è

æ

V

N

 and to the number of atoms in the system, N.  That is, 
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With the new V and P, the gas law becomes the van der Waals equation of state:
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Now, the b and 
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 are adjustable parameters, whose values are different for different substances.  They have to be fitted to empirical data.

There are countless other equations of state.  For instance, there is the virial expansion, which is an infinite series,
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There is the Beattie-Bridgeman equation of state


[image: image233.wmf]3

2

V

V

V

nkT

PV

d

g

b

+

+

+

=

.

All represent “corrections” to the ideal gas equation of state.

c. Gibbs free energy—Clausius-Clapeyron—PV diagram

Which phase is stable at a given temperature and pressure is that phase with the lowest Gibbs free energy.  On a phase boundary, where two phases coexist, there must be a common Gibbs free energy.  That is, on the boundary between liquid and gas, 
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.  Imagine changing the pressure and temperature by small amounts in such a way as to remain on the phase boundary.  Then the Gibbs free energy changes in such a way that 


[image: image235.wmf]liquid

gas

liquid

gas

gas

gas

gas

liquid

liquid

liquid

gas

liquid

V

V

S

S

dT

dP

dN

dP

V

dT

S

dN

dP

V

dT

S

dG

dG

-

-

=

+

+

-

=

+

+

-

=

m

m


We’ve assumed that dN = 0.  This result is the slope of the phase boundary curve on the PT diagram.  

Commonly, we express the change in entropy in terms of the latent heat of the transformation, thusly 
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This is the Clausius-Clapeyron relation, applicable to any PT phase boundary.

Finally, we compute the Gibbs free energy for the van der Waals model at a variety of temperatures and pressures to determine which phase is stable in each case.
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Let dN = 0, and fix the temperature, varying only P.
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Integrate 
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We have now expressions for both P and G as functions of V, at a fixed temperature, T.  Firstly, we plot G vs. P at some fixed V.  This yields a graph with a loop in it.  The loop represents unstable states, since the Gibbs free energy is not a minimum.  Integrating dG around the closed loop should give zero.  
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We plot out on a PV diagram the same points of free energy, and obtain an isotherm something like that shown on the diagram below right.
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The pressure at which the phase transition occurs, at temperature T, is that value of P where the two shaded areas cancel.  So, tracking along an isotherm from right to left, the gas is compressed and pressure rises until that horizontal section is reached.  At that point, further compression does not increase the pressure because the gas is condensing to liquid.  When the phase transition is complete, further compression causes a steep increase in pressure, with little decrease of volume, as the liquid is much less compressible than the gas.  During the transition, both gas and liquid phases coexist.
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If the temperature is high enough, there is no phase transition as V decreases.  On a PT diagram, we see a phase boundary between the liquid and gas phases, up to the critical point, where the boundary terminates.  Above the critical point, there is no distinction between gas and liquid.  That would correspond to the isotherms having no flat segment on the PV diagram.

The van der Waals model is not very accurate in reality, but it does illustrate how the observed phase behavior arises from the interactions among the atoms or molecules of the substance.

IV.
Statistical Mechanics

A.
Partition Function

1.
Boltzmann   Sec 6.1
a. Multiplicity

Consider a system, in contact with an energy reservoir, consisting of N weakly interacting identical particles.  The energy of each particle is quantized, the energy levels labeled by Ei.  Previously, we associated a multiplicity, 
[image: image246.wmf]i

W

, with each different energy level.  But, we could just as well list each microstate separately.  That is, each particle energy level, Ei, has multiplicity of 1, but some energy values occur 
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 times in the list.  At equilibrium, the total internal energy of the system of N particles is constant (apart from small fluctuations)
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Where Ni is the number of particles in state Ei. If the particles are indistinguishable, the multiplicity of the whole system is
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On the other hand, if the particles are distinguishable, as in a solid, the multiplicity of the whole system is
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The energy levels available to the particles, Ei, are not necessarily easy to determine.  If we assume an ideal gas, then the energy is just the kinetic energy of a particle confined in a finite volume.  Interacting particles will have also potential energy.  The single particle energy states are influenced by the presence of N – 1 other particles.  We normally make some simplifying assumptions.  We might assume that in a dilute gas, the particle states are the same as those of an isolated particle, unaltered by interaction between particles.  We might assume that the fact that level E8 is occupied by 28 particles, rather than by 465, has no affect on the energy levels.  In fact, the particle energy levels of a system of N particles are ever so slightly different that those of an otherwise identical system having N – 1 particles.  

b. Equilibrium

The equilibrium state of the system is the state that maximizes 
[image: image251.wmf]W

, subject to the constraints N = constant and U = constant.  We want to solve for the Ni that maximize 
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For indistinguishable particles,
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We’ll apply the method of undetermined multipliers to determine the equilibrium distribution of particles among the states, that is, the Ni.
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[At this point, notice that because dN = 0, the 
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 for distinguishable particles is exactly the same as for indistinguishable particles.  So, we only have to do this once.]

Add the three equations.
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Each term must be zero separately.
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Solve for Ni.
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Now we determine the multipliers by applying the constraints.  The first one is easy.
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The second one, b, is a bit more complicated.  If the system were to exchange a small amount of energy, dU, with the reservoir, the entropy would change as small alterations occur in the {Ni}.
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The equilibrium numbers of particles in each energy state finally are
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This is the Boltzmann probability distribution.  
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.  The greater the energy of a particle state, the less likely a particle is to be in that state.  [For atoms, we are making the ground state zero, 
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As T increases, though, the likelihood of a higher-energy state being occupied increases as well.  The exponential decay of P is slower at higher temperatures.

c. Partition function

The sum over states (Zustandsumme) is called the partition function.  In principle, it’s a sum over all the particle states of a system, and therefore contains the statistical information about the system.  All of the thermodynamic properties of the system are derivable from the partition function.  
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Remember, the partition function is written as a sum over all microstates, rather than over energy macrostates, so that the multiplicity factor does not appear explicitly.

All of the macroscopic thermodynamic quantities are obtainable from the microscopic statistics of the single particle energy states.  For instance, internal energy:  
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Entropy:  
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Pressure:  
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2.
Probability  Sec 6.2
a. Ensembles  (awnsombles)

microcanonical

In an isolated system, every microstate has equal probability of being occupied.  The total energy is fixed.  The collection of all the possible microstates of the system is called the microcanonical ensemble of states.

canonical

If the probability distribution is the Boltzmann distribution, the collection of energy states is called the canonical ensemble.  We’ve seen that such a distribution applies to a system at constant temperature and fixed number of particles, in contact with an energy reservoir.  The internal energy is not fixed, but we expect only small fluctuations from an equilibrium value.

grand canonical

If the number of particles is allowed to change, then we have to sum also over all possible numbers of particles, as well as all possible energy states, giving the grand canonical ensemble.

b. Average values

The probability that a particle will be observed to occupy a particular energy state is given by the Boltzmann distribution.
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The average value of the particle energy would be computed in the usual way,
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The internal energy of the system of N particles is U = N<E>.  We are averaging over a collection of particles whose energies are distributed according to the Boltzmann distribution.

3.
A Couple of Applications

a. Equipartition Theorem  Sec 6.3
A particle’s kinetic energy is proportional to the square of its velocity components.  In Cartesian coordinates, 
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.  In a similar vein, the rotational kinetic energy of a rigid body is also proportional to the square of the angular velocity, thus 
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.  In the case of a harmonic oscillator, the potential energy is also proportional to a square, namely the displacement components, 
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.  Very often, we approximate the real force acting on a particle with the linear restoring force of the harmonic oscillator.  Let us consider a generalized quadratic degree of freedom, 
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.  Each value that q takes on represents a distinct particle state.  The energy is quantized, so the q-values are discrete, with spacing 
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The partition function for this “system” is a sum over those q-states
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In the classical limit 
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 is small, and the sum goes over to an integral
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The average energy is 
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So, each quadratic degree of freedom, at equilibrium, will have the same amount of energy.  But, this equipartition of energy theorem is valid only in the classical limit and high temperature limits.  That is, when the energy level spacing is small compared to kT.  We saw earlier that degrees of freedom can be “frozen out” as temperature declines.

b. Maxwell Speed Distribution   Sec 6.4
A distribution function is rather like a histogram.  When we counted the multiplicity for the energy states of an Einstein solid, we obtained a histogram, or bar chart that was low on either side and peaked in the middle.  If the bins of the histogram are very, very narrow, we have a continuous function—the distribution function.  A distribution function can be created for any variable.  Let’s consider the distribution of speeds of the atoms in an ideal gas.  We want the relative probability that an atom is moving with a particular speed, v.  This is equivalent to asking what fraction of the atoms are moving with that speed.  The probability that an atom’s speed lies in an interval (v1,v2) is the integral of the distribution function.
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We need to figure out what D(v) is for an ideal gas in equilibrium.

The distribution function has two parts.  The first is the probability of an atom having speed, v.  That’s given by the Boltzmann probability distribution.  The second factor is a multiplicity factor—how many velocity vectors have the same magnitude, v.
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The number of velocity vectors that have the same magnitude is obtained by computing the surface area of a sphere of radius v in velocity space.  That is 
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The C is a proportionality constant, which we evaluate by normalizing the distribution function.
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B. Adding up the States   Sec 1.2, 1.7, 2.5, 6.6, 6.7
1.
Two-State Paramagnet   Sec 6.6
The specifics of computing the partition function for a system depend on the nature of the system—the specifics of its energy levels.  For instance, each dipole moment in an ideal two-state paramagnet in an external magnetic field has two discrete states.

a. Single dipole

There are two states in a system consisting of a single magnetic dipole, 
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b. Two or more dipoles

If the system consists of two non-interacting, distinguishable dipoles, then there are four states: 
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Now if the dipoles are indistinguishable, there are fewer distinct states, namely three for N = 2, so 
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.  This is because the states 
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 are the same state if the dipoles are indistinguishable.

Extending to N dipoles, 
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 for distinguishable dipoles;  
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 for indistinguishable dipoles, if N is large.  

2.
Ideal Gas   Sec 6.7
a. One molecule
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b. Two or more molecules

If the molecules are not interacting, then as before, the partition function for N molecules is just 
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 or 
[image: image298.wmf]!

N

Z

Z

N

i

N

=

 depending on whether the molecules are distinguishable or not.  In the ideal gas, the molecules are not distinguishable one from another.  If the molecules were in a solid, then they would be distinguishable because their positions would be distinctly different.

[Note that in the text Section 6.7, the rotational partition function is lumped in with the internal partition function.]

c. Internal partition function

The internal partition function sums over the internal vibrations of the constituent atoms.  We would usually approximate the energy levels by harmonic oscillator energy levels.
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The index i labels the vibrational modes, while n labels the uniformly spaced energy levels for each mode.  For instance, the water molecule has three intermolecular modes.  A molecule having more atoms has more modes.  A diatomic molecule has just one mode of vibration.

d. Rotational partition function

A molecule is constrained to a particular shape (internal vibrational motions apart), which we regard as rotating like a rigid body.  The angular momentum, and therefore the rotational kinetic energy, is quantized, thusly 
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, where I is the moment of inertia of the molecule about the rotational axis.  Classically, if 
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 is the angular velocity and L is the magnitude of the angular momentum, then the kinetic energy of rotation is 
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.  Quantum mechanically, the angular momentum is quantized, so that 
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 with j equaling an integer.

Now, this applies to each distinct axis of rotation.  In three dimensions, we start with three axes, but the symmetry of the molecule may reduce that number.  The water molecule has three axes, but a carbon monoxide molecule has only one.  Basically, we look for axes about which the molecule has a different moment of inertia, I.  But it goes beyond that.  If the symmetry of the molecule is such that we couldn’t tell, so to speak, whether the molecule was turning, then that axis does not count.  That’s why there are no states for an axis that runs through the carbon and oxygen atoms of carbon monoxide.

Therefore, a rotational partition function will look something like this for three axes
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e. Translational partition function

In an ideal gas, the molecules are not interacting with each other.  So the energy associated with the molecular center of mass is just the kinetic energy, 
[image: image305.wmf]m

p

mv

2

2

1

2

2

=

.  The molecule is confined to a finite volume, V, so that kinetic energy is quantized also.

First consider a molecule confined to a finite “box” of length Lx on the x-axis.  The wave function is limited to standing wave patterns of wavelengths 
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, where 

nx = 1, 2, 3, 4, . . .  This means that the x-component of the momentum is limited to the discrete values 
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.  The allowed values of kinetic energy follow as 
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Naturally, the same argument holds for motion along the y- and z-axes.  
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Unless the temperature is very low, or the volume V is very small, then the spacing between energy levels is small and we can go over to integrals.
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The quantity 
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 is the quantum volume of a single molecule.  It’s a box whose side is proportional to the de Broglie wavelength of the molecule.  In terms of that, the 
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[Actually, in the classical form of the partition function, we are integrating over the possible (continuous) values of particle momentum and position.
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The classical partition functions differ from the classical limit of the quantum mechanical partition functions by factors of h.  Because h is constant, this makes no difference in the derivatives of the logarithm of Z.]
Putting the parts all together, for a collection of N indistinguishable molecules
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3.
Thermodynamic Properties of the Ideal Monatomic Gas

a. Helmholz free energy     Sec 6.5
Consider the derivative of the partition function with respect to temperature.
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On the other hand, recall the definition of the Helmholtz free energy.
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Evidently, we can identify the Helmholtz free energy in terms of the partition function thusly,
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For the monatomic ideal gas, 
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b. Energy & heat capacity
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c. Pressure

Of course, we’re going to get the ideal gas law.
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d. Entropy and chemical potential
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4.
Solids  Sec 2.2, 3.3, 7.5
In a solid, the atoms/molecules are each confined to specific locations.  Therefore, we regard them as distinguishable particles.

a. States of the system

Each particle has an equilibrium position about which it can vibrate like a harmonic oscillator.  So, we regard the solid as a collection of three-dimensional harmonic oscillators.  For a single oscillator, the partition function is a sum over harmonic oscillator states
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This is an infinite series, but it converges.
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b. Heat capacity

The total energy for a system of N three-dimensional oscillators is
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The heat capacity is 
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This result assumes that all N oscillators have the same frequency.  The expression approaches the Delong-Petit limit for high temperatures, but decreases exponentially at low temperatures.  Experiment shows that CV decreases like T3 at low temperature.  The crucial incorrect assumption in the Einstein model of a solid is that the oscillators do not interact.  In reality, they do not oscillate independently.

c. Metals

In a metallic solid, the valence electrons are liberated from the atoms, and are free to move about among the atoms.  As a result, the conduction electrons behave similarly to atoms in a gas.  Their energy states are those of particles confined in the volume of the crystal, rather than the electronic states of the atoms from which the electrons escaped.  However, this electron gas is not an ideal gas.  For one thing, the electron gas is dense, and the electrons obviously interact with each other.  They also interact with the ions of the crystal lattice.  Finally, electrons obey the exclusion principle, meaning that no two electrons can be in exactly the same energy microstate.  
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You see that the CV goes above the Delong-Petit level as T increases.

5.
Photons  Sec 7.4
a. Photon gas

Consider electromagnetic radiation inside a box.  We may regard the electromagnetic field as a superposition of standing waves that fit between the walls of the box.  The system, then, consists of these standing waves, rather than literal atoms oscillating back and forth.  The energy of a standing wave of a particular frequency, f, is quantized 
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.  The average energy associated with that frequency is
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This expression is known as the Planck Distribution.  Since each quantum of EM energy is hf, the average number of photons of frequency f is
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In effect, we are treating the system as a gas composed of photons.

b. Total energy

We have the average energy of photons of frequency f in the box.  The total energy contained in the box is obtained by summing over the allowed frequencies.  The frequencies are restricted by the finite volume of the box.  For instance, along the x-axis, the frequencies of standing waves that will fit in the length Lx are 
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.  Of course, the same applies to the y- and z-axes.  In three dimensions, 
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We are adding up the points in a spherical volume of radius 
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.  Since the number of photons in the box is very, very large at any but very low temperatures, the sum can go over to an integral.
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Now let us change variables from n to En.  
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We can now compute also the heat capacity and entropy of the photon gas.
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c. Black body spectrum
What we have here is the energy per unit volume per unit energy, 
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, also called the spectrum of the photons.  It’s named the Planck spectrum, after the fellow who first worked it out, Max Planck.
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Notice that 
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, and that the spectrum peaks at 
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.  These “Laws” had been obtained empirically, and called Stefan-Boltzmann’s “Law” and Wein’s Displacement “Law.”  
d. Black body radiation

Of course, the experimentalists were measuring the spectra of radiation from various material bodies at various temperatures.  Perhaps we should verify that the radiation emitted by a material object is the same as the spectrum of photon energies in the oven.  So, consider an oven at temperature T, and imagine a small hole in one side.  What is the spectrum of photons that escape through that hole?  Well, the spectrum of the escaping photons must be the same as the photon gas in the oven, since all photons travel at the same speed, c.  By a similar token, the energy emitted through the hole is proportional to T4.
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Finally, we might consider a perfectly absorbing material object exchanging energy by radiation with the hole in the oven.  In equilibrium (at the same T as the oven), the material object (the black body) must radiate the same power and spectrum as the hole, else they would be violating the Second “Law” of thermodynamics.
6.
Specific Heat (Heat Capacity) of Solids  Sec. 7.5
a. Einstein solid

The total energy for a system of N three-dimensional oscillators is
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The heat capacity is 
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[The text uses 
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.]  This result assumes that all N oscillators have the same frequency.  The expression approaches the Delong-Petit limit for high temperatures, but decreases exponentially at low temperatures.  Experiment shows that CV decreases like T3 at low temperature.  The crucial incorrect assumption in the Einstein model of a solid is that the oscillators do not interact.  In reality, they do not oscillate independently.

[image: image362.png]



You see that the CV goes above the Delong-Petit level as T increases.

b.
Debye theory of specific heat

The oscillators do not vibrate independently.  Rather, there are collective modes of vibration in the crystal lattice.  we’ll treat the situation as elastic waves propagating in the solid.  We consider that the energy residing in the elastic wave of frequency 
[image: image363.wmf]w

 is quantized.  Quanta of elastic vibrations are called phonons.  Secondly, there is an upper limit of the frequency that can exist in the crystal—the cut-off frequency.

So, consider sound waves propagating in the crystal, with the dispersion relation 
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.  The total vibrational energy of the crystal will be 
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The average energy of a mode is still 
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.  Therefore, 
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.  Now, what is the range of frequency?  Not 
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 is the Debye frequency, or cut-off frequency.  The cut-off frequency arises because the shortest possible wavelength is determined by the inter-atomic spacing.  Put another way, the maximum possible number of vibrational modes in the crystal is equal to the number of atoms (let’s say a mole) in the crystal, times 3.  I.e.,
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With this as the upper integration limit, the total energy becomes
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In turn, the specific heat is 
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In the last expression, the Debye temperature, 
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, is introduced.
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Let’s look at the high and low temperature limits.

For 
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For 
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Evidently, the Debye version matches the experimental temperature dependence of the specific heat at low temperatures, as the classical and Einstein theories do not.

We can relate the Debye temperature to the Young’s modulus of the crystal, through the wave speed.


[image: image379.wmf]3

1

2

 

3

1

2

 

6

6

÷

ø

ö

ç

è

æ

×

=

÷

ø

ö

ç

è

æ

=

=

Q

V

N

Y

k

V

N

v

k

k

A

A

s

D

D

p

r

p

w

h

h

h


Now, the density is 
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, so qualitatively, 
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.  (M is the atomic mass.)

c.
Reduced temperature

Often, a quantity called the reduced temperature, 
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 is used when plotting the heat capacity.  The Debye temperature contains the information about the particular crystal substance.  When plotted versus reduced temperature, the CV curve is identical for all substances.
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