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I.
Crystallography

A.
Crystal Lattices

1.
Inter-atomic Binding

In a solid, atoms/molecules are bound together in a rigid structure.  The nature of the binding virtually determines the structure, as well as the physical properties of the solid.

a.
Binding energy

The binding energy is defined as the negative of the potential energy.
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For a system to be “bound” its total potential energy must be < 0, so 
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.  The atoms will be arranged in geometry and spacing to maximize the EB.

b.
Types of bond

Ionic

Very strong, but not directional.  One or more electron is transferred from one atom to another forming closed electron shells.

Covalent

Strong and directional, according to which orbitals (s, p, d, etc.) are involved in forming the bond.  A hybrid electron orbital is formed so that one or two electrons are shared by two atoms.

Metallic

Strong, but not directional.  The valence electrons are virtually free, forming a “sea” of electrons in which the + metallic ions are immersed.

Hydrogen bond

Weak and directional.  A hydrogen atom forms a kind of bridge between two molecules.  Water ice is the most familiar example.  Sketch it. . . .

van der Walls

Weak and not directional.  This a kind of average induced dipole-dipole interaction between atoms having closed electron shells, such as Ar, Kr, Ne, etc.

c.
In general

Between any two atoms, the potential energy of interaction looks like this:
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At large separation, r, the net force between two atoms is attractive and 
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.  For two ions, it’s 
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.  However, as atoms are closer together, the repulsion between the electron clouds increases.  That repulsion goes like 
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.  The sum of these two terms gives an effective V® like the one depicted above.  There is some 
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2.
Crystal Lattices

In a crystal, atoms are arranged in a repeating, or periodic, pattern called an array.  We first consider the geometry of a periodic array of points—the crystal lattice.  The points are called lattice points.

a.
Basis vectors

Let 
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 be the position vector of a lattice point.  For 3-dimensional crystal lattice, the lattice vectors are 
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Where n1 , n2 , & n3 are integers and 
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 are the lattice basis vectors.  The lattice basis vectors must be non-coplanar, but need not be mutually orthogonal.   
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b.
Bravais lattice  (bra-vay)

In a Bravais lattice, all lattice points are equivalent.  In a non-Bravais lattice, not all lattice points can be reached by an 
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, using a specified set of basis vectors.  
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We refer to such a lattice as a lattice with a basis.  Pairs or clusters of points are uniformly spaced, rather than individual points.

c.
Unit cells

The basis vectors form the edges of a parallelepiped (parallelogram in 2-d), like a block out which the larger crystal is built.

Volume of the unit cell.
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In 2-dimensions, the volume is the area[image: image439.wmf]A
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Obviously, a cubic or rectangular unit cell is more convenient.  
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We can identify any number of repeating blocks of various sizes, incorporating any number of lattice points.

c.
Primitive unit cells

A primitive unit cell contains a single lattice point.  So, it is the smallest possible unit cell.  The primitive unit cell is still not unique.  However, all primitive unit cells of a specified crystal structure have the same volume (area).  E.g., a square lattice
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Note:  these two primitive unit cells have lattice points at their 4 corners.  The corner lattice points are shared with 4 neighboring cells.  So, each cell contains 
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 lattice point.

Note:  we are not required, though, to put the origin of our coordinates on a lattice point.

3.
Crystal Systems

The distinguishing feature of a crystal system is that the structure is periodic—the repeating units repeat in all directions, filling all of space.  The key word there perhaps is filling.

a.
Two dimensional

We might ask, how many distinctly different shapes of tile are there that will completely cover a flat floor?  It turns out, fortunately, that there are only five distinct shapes that will completely fill a 2-dimensional space.

	system
	geometry

	square
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	rectangular primitive
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	rectangular centered
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	hexagonal
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	oblique
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Fig. 2.18 The five two-dimensional Bravais lattices. The oblique lattice has no

restrictions on the length of a and b or on the angle between them. The oblique

lattice has only 2-fold rotational symmetry. When restrictions are placed on the

length and orientation of a and b, additional symmetries occur, which distinguish
the four other types.
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Levy, R. A., Principles of Solid State Physics, Academic Press, 1968.
b.
Three dimensional

Of course, there are a few more possibilities in 3-dimensions, since there is a 3rd basis vector and 3 angles.  Even so, there are only 14 distinct crystal systems in 3-dimensions.  See pages 36 & 37 in Blakemore; pages 8 & 9 in Omar.

c.
Symmetry

What property distinguishes one crystal system from another?  It’s their symmetries.  

Translation symmetry—slide by integer multiples of 
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 and the environment is exactly the same.

Rotation symmetry—Consider the shape of the unit cell.  If the cell can be rotated about a specified axis and appear unchanged, then it has rotation symmetry.  Commonly, that angle is 
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; the axis is called an n-fold axis.

Reflection symmetry—The unit cell is unchanged if reflected across a plane.  A reflection symmetry is designated by the letter m.

d.
No fives

Here’s something odd.  It is impossible to construct an infinite crystal lattice with a unit cell having 5-fold rotational symmetry.  Consider the diagram below.  
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BC ought to be a lattice vector, but it is shorter than a.  So, C cannot be a lattice point, but it is a lattice point relative to the point A by rotation.  So, we have a contradiction.  Put it another way, we cannot make an equilateral triangle with side a and angles 
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e.
Symmetry of the basis

This is a second use of the word basis in connection with crystal symmetry.  It refers to the physical object associated with each lattice point in the crystal.  In the simplest case, that object is a single spherically shaped atom or ion.  However, the object may be a molecule (as it is in ice, say) or it may be 2 or more ions as in NaCl or it may be something even more complicated.  This has the effect of reducing the overall symmetry of the crystal.

4.
Point Groups & Space Groups

A more systematic description of crystal symmetries. . .

B.
Atoms

Now, we imagine an atom occupying each lattice site.  In a simple crystal, the atoms are all the same—argon or iron or carbon, etc.  Each substance will form a distinct crystal, according to the type of binding involved.

1.
Packing

The atoms will assume a structure that minimizes the binding energy.

a.
Cubic

Simple cubic

The side of the cubic unit cell is 
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, where R is the radius of the atoms.  We are visualizing the atoms as hard spheres.
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Now, consider the amount of “empty“ space in the cube:  the cell is occupied by one complete atom (sharing 8 with 8 neighboring cells).

The volume of the cubic unit cell is 
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The volume of a sphere is 
[image: image42.wmf]÷

÷

ø

ö

ç

ç

è

æ

=

3

3

4

R

V

atom

p

.

The packing ratio is 
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 for the simple cubic structure.

Body-centered cubic

The bcc structure has an atom situated at the center of the cube, as well as at its corners.  
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Therefore, the diagonal of the cube is 4R, so 
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.  There are 2 atoms per unit cell.  The packing ratio is 
[image: image46.wmf]6802

.

0

317

.

12

3776

.

8

3

4

2

3

3

3

3

=

=

×

=

R

R

a

R

r

p

.  

Face-centered cubic

The fcc structure has an atom in the center of each of the six faces of the cube, as well as at the corners.  Hence, it’s the cube face diagonal that equals 4R, and the cube edge is 
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The atoms in the cube faces are shared between two cells, so that the unit cell contains 
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 atoms.  The packing ratio is 
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Of the cubic structures, the body-centered-cubic is the most closely packed.

b.
Hexagonal

In the hexagonal structure, the unit cell is a hexagonal right prism.  There are two hexagonal faces joined by six rectangular faces.  

Simple hexagonal

The atoms are situated at the corners of the prism and in the centers of the hexagonal faces.  
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The 12 corner-atoms are shared among 6 cells, while the two in the hexagonal faces are shared two cells each.  Consequently, there are 
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 atoms per unit cell.  [We could also visualize the atoms situated at the midline of the hexagonal prism rather than at the corners.  Then we’d say there were 
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 atoms in the unit cell.]

The volume of the hexagonal prism is 
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.  The volume of three atoms of radius R is 
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.  Therefore, the packing ratio is 
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, which is less closely packed than the fcc or bcc structures.  However, there is a hexagonal structure more closely packed than is the simple hexagonal.

Hexagonal closest packed

The hexagonal layers are offset, fitting into the troughs, as it were, of the layer below.
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As a result, the inter-atomic spacing is a bit less than it is in the simple hexagonal structure.

The volume of the hexagonal cell is 
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.  There are 6 atoms contained in the hexagonal prism.  Thus, the packing ratio is 
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, the same as the fcc structure.  By the way, the packing ratio is also called the packing fraction.

2.
Layers

In a simple crystal, each lattice point is occupied by an atom, all of the same kind.  The atoms in the crystal are arranged in parallel planes.  Because the crystal can be cut at different angles, any number of atomic planes can be identified, not just those parallel or perpendicular to the basis vectors.

We need a scheme for labeling the planes that will tell us the orientation of the specific plane of atoms.  Here is such a scheme:

a.
Direction

Consider the lattice vector joining any 2 lattice points.  Let one lattice point be the origin of coordinates.  The lattice vector would be written
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Now imagine factoring out any common factors, if any from the integer triplet:
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For example,  
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We say that 
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 is in the [2, 1, 3] direction.  For instance, [1, 0, 0] corresponds to 
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b.
Miller indices

Slice the crystal with some arbitrary plane.  That plane intersects the 
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 directions at x, y, and z.  Next take 
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 and turn the ratios upside down:  
[image: image70.wmf]z

c

 

and

 

,

y

b

 

,

x

a

.  Finally multiply by a common factor to obtain three integers.

For example,
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The numbers 
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 are the Miller indices of that crystal plane.  Now the thing is, all planes parallel to this plane have the same Miller indices.

In practice, we are interested in planes with lower numbers, because they are populated by more atoms per unit area.  E.g., 
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c.
Plane spacing

Planes having the same Miller indices 
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 are parallel to each other and have uniform spacing between them.  They also have the same number of atoms per unit area.  We are interested, or will be interested, in that inter-planar distance, 
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All we need to figure out is the distance of the reference plane in the unit cell from the origin.  
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We envision the vector from the origin perpendicular to the plane.  The direction cosines of that vector, 
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Therefore, the Miller indices, along with the lattice parameters, give us the atomic plane spacing.  Subsequently, we’ll see that the atomic plane spacing determines the diffraction patterns produced by a crystal.

3.
Some Real Crystalline Substances

a.
Sodium chloride

Binding is ionic, between Na+ and Cl-.  So, the binding is strong, and the crystal is hard.  Because the ions are spherically symmetric, the crystal structure is cubic, with +/- ions alternating.  In fact, the structure consists of two interpenetrating fcc lattices, offset by 
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 from each other.
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b.
CsCl

This crystal is also ionic, but in this case the crystal structure is two interpenetrating simple cubic lattices, forming a bcc configuration.  This illustrates how confusing crystal descriptions can be.  In the case of NaCl above, there are two lattices, an fcc lattice of Na and an fcc lattice of Cl.  The Cls, for instance, lie between Na ions along the cube edges.  In the case of CsCl, however, a Cs ion lies at the center of a simple cubic lattice of Cl ions (or vice versa), hence the term bcc configuration.  The crystal might also be described as being simple cubic with a two-atom basis.  

It is evidently the relative sizes of the filled electron shells of the ions that distinguishes the NaCl from the CsCl structures.  Other ionic compounds take on the Sodium chloride or the Cesium chloride structure.  [Table 1.2 in Omar]

c.
Metallic elements

The metal ions in a metallic crystal take on fcc, bcc, or hcp structures, similarly to the inert elements (Ar, Kr, etc.).  The metal crystal may change from one structure to another with changes in temperature.  The metal ions are all positive, yet are held in place by the surrounding “sea” of almost free electrons.  

d.
Diamond structure

The diamond structure is an fcc structure, with a basis of two atoms.  In the case of diamond itself, both those atoms of the basis are Carbon.  In other compounds, such as Zinc sulfide (ZnS), the basis is 1 Zn & 1 Sulfur atom.  In relation to the cubic unit cell, the two atoms of the basis are at (0,0,0) and 
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 along the cube diagonal.  Each atom is surrounded by four nearest neighbors that form the vertices of a regular tetrahedron.  The binding is covalent—the shapes of the valence orbitals determine the tetrahedral coordination.  
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Similarly to the NaCl or CsCl structures, water ice forms in what is called the wurtzite structure which consists of two interpenetrating hcc lattices, rather than cubic.  The water molecules form tetrahedrally coordinated hydrogen bonds with each other.  The term wurtzite is the name of an alternative structure for ZnS.
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C.
Diffraction by Crystals

The atoms in a crystal are arranged in a periodic array.  We can identify any number of identical parallel planes cutting through the crystal at specific angles relative to the basis vectors.  The density of atoms in these planes may vary widely.

1.
Elastic Scattering of X-rays

X-rays scatter from the electrons in the crystal.  Let 
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 be the electron number density in the crystal.  This will be greatest in the vicinity of an atom.

a.
Fourier analysis

The 
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Firstly, consider a Fourier expansion in one-dimension:  (p is an integer)
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[image: image95.wmf]a
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 is a point in Fourier space, or in the reciprocal lattice of the crystal.  Cp and Sp are real coefficients.  Alternatively, we might use the complex exponential form:
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Where np is complex and 
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In three dimensions, there is periodicity in three directions (but not necessarily the Cartesian directions) along 
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.  So the Fourier expansion is in three dimensions:


[image: image99.wmf](

)

(

)

å

×

=

G

G

r

G

i

n

r

n

exp



[image: image100.wmf]G

 is a vector.  The question is, what 
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 invariant under a translation of the crystal by 
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b.
Reciprocal lattice vectors

We will propose some reciprocal lattice vectors, and show that they meet the condition posed by the question above.

Proposal:  reciprocal lattice vectors shall be defined thusly,
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Notice that 
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The vectors 
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 generate the points of the reciprocal lattice.  [In Omar, 
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The reciprocal lattice is a lattice of points in Fourier space.  Here’s why these reciprocal lattice vectors are the same 
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 that appear in the Fourier expansion:
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However,
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Therefore, 
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 in the Fourier expansion are reciprocal lattice vectors.

c.
Elastic scattering

From a single point scattering center, such as an electron, incident plane waves produce outgoing spherical waves.  In elastic scattering, the scattered waves have the same energy as the incident waves.
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Now, consider scattered spherical waves from two electrons, one at the origin and the other at a relative position 
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The path difference between the two outgoing waves is 
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.  We wish to determine for which scattering vector, 
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, will there be constructive interference between the two scattered x-rays.
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The amplitude of the scattered wave is proportional to 
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Substitute for 
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F is called the scattering amplitude.  When is F large, when small?  Well, it’s large only when 
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 and very small otherwise.  That is, constructive interference among the scattered waves occurs in the directions 
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, a reciprocal lattice vector.  

d.
Bragg condition

For elastic scattering, 
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e.
Related to Miller indices

Now we wish to connect the reciprocal lattice vectors to the planes in the crystal, which we previously labeled with the Miller indices 
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Recall the definition of the Miller indices.  The basis vectors define three coordinate axes (not necessarily mutually perpendicular).  We’ll use x, y, & z nonetheless to be distances along those three coordinate axes.  For example, in the figure above, the plane of interest intersects the axes at x, y, & z.
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We can see that 
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Therefore, 
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Further, the spacing of the 
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2.
Laue Equations

Here’s an alternative expression of the diffraction condition.

a.
Scattering vector
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The phase difference between waves reflected from two parallel planes is
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Constructive interference occurs if 
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b.
Laue equations

Now suppose 
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 is a lattice  (or basis vector), say 
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.  Then the phase angle becomes 
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Consider the first one.  
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where 
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 is the direction cosine.
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c.
Miller indices

Of course, these 
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 are just the Miller Indices of the lattice planes in which the two scattering centers (atoms) lie.  That’s why we used the same symbols in the paragraph above.

This claim can be demonstrated by considering a two dimensional case.  
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By similar triangles, 
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[image: image165.wmf]b

k

 

 

µ

b

 and 
[image: image166.wmf]c

l

 

 

µ

g

.

3.
Brillouin Zones

Here is yet another way of visualizing the diffraction condition.

a.
In the reciprocal lattice
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 is the diffraction condition.  The reciprocal lattice vector, 
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.  Here is a rectangular reciprocal lattice:
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Any x-ray whose 
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b.
First Brillouin zone

Brillouin zones are areas/volumes enclosed by perpendicular bisectors of reciprocal lattice vectors, 
[image: image173.wmf]n
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The first brillouin zone is defined by the perpendicular bisectors of the reciprocal basis vectors, 
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 and 
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 (for a 2-dimensional lattice).

The first Brillouin zone is the smallest volume enclosed by perpendicular bisectors.  It forms the primitive unit cell of the reciprocal lattice.  Any 
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 that reaches from the origin of the reciprocal lattice to the zone boundary will diffract.  The zone boundaries are formed by the bisectors.

c.
More zones

Second, third and etc. zones are defined by the bisection of longer reciprocal lattice vectors, such as 
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II.
Lattice Vibrations—Phonons

A.
Continuous Media

1.
Elastic Waves

If the wavelength of an elastic wave is much longer than the atomic spacing, then we treat the solid as a continuous medium. 

a.
Dispersion relation

Consider a narrow bar of solid material.
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The bar has density 
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 and cross sectional area 
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.  Let there be a longitudinal wave traveling in the bar, so that the elastic displacement at x is u(x) in the 
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-directions.  Applying Newton’s 2nd “Law” to the segment of bar dx at x . . .
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We can write this in terms of Young’s Modulus and the stress, e, & strain, S.
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This is a wave equation, which has the usual solutions of the form 
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 are evaluated by plugging the solution into the wave equation.
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The expression for 
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 is called the dispersion relation.    The quantity 
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 is the wave speed, vs, and is the slope of the dispersion relation graph.

The phenomenon called dispersion (as in prisms) occurs when the dispersion relation is not linear—the slope is not constant with q.

b.
Modes of vibration—density of states

Now, apply periodic boundary conditions to the bar (we are aiming toward crystals).  That is,  
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Therefore, the product 
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Each “allowed” value of q is a mode of vibration corresponding to a particular 
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The density of states is the number of allowed qn that lie in the interval dq on the q-axis.  That number is 
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In terms of 
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With 
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; it does depend on the properties of the medium:  L, Y, 
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c.
Extension to three dimensions

Consider elastic waves traveling in 3 dimensions in a cube of side L.
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With periodic boundary conditions, we require that 
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These form a uniformly spaced grid of points in q-space.
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How many such points lie in a sphere of radius q?  Divide the volume of the sphere by the cubical volume occupied by each point.
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Take the derivative with respect to q.
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This is the number of points in the shell of radius q and thickness dq.  Again, in terms of the frequency, 
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This density of states is proportional to the frequency squared.
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Finally, we multiply the density of states by 3, since there are three vibrational modes for each value of q.   (This is only approximately correct, since in fact the 
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 are not really identical for all three modes.  Particularly, the vs is not quite the same for transverse and longitudinal waves.)

2.
Specific Heat

According to the First “Law” of Thermodynamics, 
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, where U is the internal energy of a system (in this case a chunk of crystal), Q is the energy transfer into the system in the form of heat, and W is the work done on the system.

a.
Classical theory of specific heat

If no work is done, then 
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, and the constant volume specific heat is obtained from
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It is found experimentally that
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The classical assumptions are that the atoms of a crystal vibrate on their lattice sites like harmonic oscillators.  Further, at equilibrium, the average energy of each oscillator is the same, namely 
[image: image218.wmf]kT

, where k is the Boltzmann constant and T is absolute temperature.  A mole of 3-dimensional oscillators, then, will have an internal energy of 
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which is independent of temperature.  Obviously, this theoretical expression fails to match experiment at “low” temperature.

b.
Einstein solid

Let’s assume once again that the crystal is composed of independent harmonic oscillators.  Let’s assume further that the energies of the harmonic oscillators are quantized.  An atom in the crystal lattice can gain or lose energy only in discrete steps of 
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.  The average energy of an ensemble of harmonic oscillators in contact with a thermal bath is
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(The crystal is in equilibrium with the thermal bath.  Its temperature is constant the probability that a specific oscillator has energy 
[image: image223.wmf]n
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 is given by the Boltzmann distribution.)
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The total energy of a mole of 3-dimensional oscillators is, then,
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Finally, the specific heat is
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(The Einstein Temperature is defined as 
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.  The Einstein Temperature depends on the crystal substance, since it has the oscillator frequency in it.)

While superficially this graph resembles the experimental graph, in fact it has the wrong shape at very low temperature.  Experiment shows that 
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.  So, we need a further refinement of the theory of specific heat.

c.
Debye theory of specific heat

The oscillators do not vibrate independently.  Rather, there are collective modes of vibration in the crystal lattice.  Eventually, we will solve for the vibrational states of coupled oscillators.  At this point, however, we’ll return to the elastic waves propagating in the solid.  We consider that the energy residing in the elastic wave of frequency 
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 is quantized.  Secondly, there is an upper limit of the frequency that can exist in the crystal—the cut-off frequency.

So, consider sound waves propagating in the crystal, with the dispersion relation 
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.  The total vibrational energy of the crystal will be 
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The average energy of a mode is still 
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 is the Debye frequency, or cut-off frequency.  The cut-off frequency arises because the shortest possible wavelength is determined by the inter-atomic spacing.  Put another way, the maximum possible number of vibrational modes in the crystal is equal to the number of atoms (let’s say a mole) in the crystal, times 3.  I.e.,
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With this as the upper integration limit, he total energy becomes
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In turn, the specific heat is 
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In the last expression, the Debye temperature, 
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, is introduced.
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Let’s look at the high and low temperature limits.
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Evidently, the Debye version matches the experimental temperature dependence of the specific heat at low temperatures, as the classical and Einstein theories do not.

We can relate the Debye temperature to the Young’s modulus of the crystal, through the wave speed.
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Now, the density is 
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, so qualitatively, 
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d.
Reduced temperature

Often, a quantity called the reduced temperature, 
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 is used when plotting the heat capacity.  The Debye temperature contains the information about the particular crystal substance.  When plotted versus reduced temperature, the CV curve is identical for all substances.

B.
Lattice Waves

Of course, the crystal is not a continuous medium, but is composed of separated atoms.  Determination of the normal vibrational modes of the system means solving the equations of motion.

1.
One-Dimensional Monatomic Crystal

We’ll start with a discussion of a one-dimensional crystal consisting of a linear chain of identical atoms of mass m and lattice spacing a.  The displacement of the nth atom from its equilibrium position is un.  The atoms interact with their nearest neighbors only, via a Hook’s “Law” (linear restoring) force--
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a.
Dispersion relation
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The net force on the nth atom is 
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In Newton’s 2nd “Law”
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We’ll assume a solution of the form 
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,

.  Similarly for un+1,o and un-1,o.  We may as well let un+1,o = un-1,o = un,o = uo.  If the assumed solution is substituted into the equation of motion, we obtain the dispersion relation.
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Using an identity, this equation becomes

[image: image255.wmf]2

sin

4

2

sin

4

2

2

qa

m

m

qa

b

w

w

b

±

=

-

=

-


[image: image256.png]



Now, in one dimension the density is 
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b.
Group velocity

The phase velocity of a traveling wave is 
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While on the other hand 
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.  Now, vg is the speed with which energy is transmitted by the wave.  If vg = 0, then the wave is a standing wave, and no energy is transported.  This is the same as saying that a wave of wavelength less than the lattice spacing, a, cannot propagate in the crystal.  Notice, too, that the cut off at 
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 corresponds to the boundary of the 1st Brillouin zone in the crystal reciprocal lattice.   (by the way, Brillouin’s first name was Le’on.)
2.
Diatomic One-Dimensional Crystal

a.
Dispersion relation
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There are 2n atoms, alternating masses m and M.  The lattice constant is 2a, with a basis of two atoms.

The net force on the atom of mass m is 
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On the atom of mass M,
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Assume the solutions 
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, and plug into the equations of motion--
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Rearrange
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These are two simultaneous linear equations with u2n,o and u2n+1,o as the unknowns.  The determinant of the coefficients must vanish.
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Expand the determinant and solve for 
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 with the quadratic formula.
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There are two solutions.
(+)
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These yield two branches on the dispersion curve graph.
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The upper branch is called the optical branch while the lower branch is called the acoustic branch.  The gap at 
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 represents forbidden frequencies—they do not propagate along the crystal.

b.
Physical interpretation of the branches

For the acoustical branch, the two atoms of the basis oscillate with the same amplitudes and in phase.  In the optical branch, the two atoms oscillate 
[image: image288.wmf]p

 out of phase, with amplitudes inversely proportional to their masses, so that the diatomic center of mass remains still.
3.
Normal Modes

Those curves in the dispersion curve are not continuous curves, but rather dotted lines.
a.
Boundary conditions

Recall the one-dimensional continuous medium.  We required that 
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, meaning that the allowed q-values are discrete:  
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  If we count up how many q-values there are from q = 0 to 
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, we get N, the number of atoms in the unit of crystal of length L.  (N will need to be even, since the basis of the one-dimensional diatomic crystal is 2.)  There are always N normal modes, then number of degrees of freedom in the crystal.  However, this total of N is distributed in the branches of the dispersion graph.
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b.
Density of states

The density of states is the number of vibrational modes in the interval 
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For the 1-dimensional case, we found 
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Notice that for 
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, there are no vibrations.  

c.
Extension to three dimensions

In three dimensions, the atoms can vibrate in three (3) directions—along the x-, y-, and z- cartesian directions, for instance.  There are 3N normal modes.  The dispersion relation is different for each kind of motion, so there are three branches in the dispersion relation.
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The density of states typically looks like the figure below, and possibly different for each branch of the dispersion relation.
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For a diatomic three-dimensional lattice, there are six branches.  Imagine even more branches with more different atoms in the crystal.

4.
Phonons

Regarding each atom as a harmonic oscillator, we said that each oscillator has energy 
[image: image302.wmf]w
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.  Let us now regard the energy of collective lattice vibrations similarly as being quantized, and call the quanta phonons.
a.
Quantized lattice waves

At a specified temperature there will be, on average, a certain amount of energy in waves of frequency 
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.  The average number of phonons of that frequency is
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and the average energy of those phonons is 
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b.
Phonon density

The phonon density is the number of phonons per frequency mode.  

When 
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So to obtain the total number of phonons of all frequencies or wave numbers, we have to integrate
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The total number of vibrational modes is equal to the number of degrees of freedom—3N.  [N is the number of atoms in the crystal.]  The number of phonons per unit volume of the crystal is the following:
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[Note that 
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c.
Phonon scattering
We think of the crystal being filled with phonons.  An incident photon (x-ray, for instance, or infrared) entering the crystal interacts with the phonons.  Perhaps the photon is absorbed, and a phonon of the same energy is created.  Perhaps a phonon vanishes and a scattered photon is created.  Perhaps an incident neutron absorbs or emits a phonon by colliding with an atom of the lattice.

III.
Band Theory

A.
Free Electron Model of Metals
We are seeking to construct a model for the physical properties of metals, particularly electrical and thermal.
1.
Classical Electron Gas
We assume that when metallic atoms form a crystal lattice, the valence electrons of each atom are liberated.  They become free to move throughout the crystal—they are called conduction electrons.  
a.
Free electron gas

Consider a collection of free particles confined to a box.  The particles are charged (-e) and there are a lot of them:  
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.  The conduction electrons comprise a dense plasma.  
b.
Electrical conductivity

Consider an electron in an electric field, 
[image: image315.wmf]E
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.  The electron will be accelerated.  However, as there are other particles present, the electron will at some point collide with another particle, and lose its kinetic energy.  The average time between such collisions is the collision time, 
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.  

We represent the effect of the collisions by a frictional-style force, assumed to have the form 
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.  The equation of motion for the electron undergoing a series of collisions while being accelerated by the electric field is  [component in the direction of 
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In the steady state case, 
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, known as the drift velocity.  The drift velocity is the net movement of conduction electrons through the crystal in the direction of the externally applied electric field.  That will be the electric current.  The current density is 
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, which is Ohm’s “Law.”  Let us put in some characteristic numerical values.
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This is the conductivity, 
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.  So, the simple electron gas model can reproduce the observed behavior of conductivity in metals.  The still open question is, how did we know what collision time to use?
c.
Collision time

We presume that the electron is colliding with the lattice atoms (ions).  So that is hardly a free electron model, really.  We do assume that the electron is free between collisions.  Most crudely, we could imagine an electron bouncing from one lattice atom to the next.  But this actually underestimates the mean free path.  Instead, we have to picture deBroglie waves being diffracted by the crystal lattice.  At any moment, the deBroglie wavelength of a conduction electron is 
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 is the random thermal speed of the electron, which 
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.  If the lattice were perfectly periodic, the electron would propagate (scatter) through the lattice without colliding, in effect, that is without losing kinetic energy.  The collision time would be infinite.  If there are imperfections in the lattice, the resonance is interrupted; the electron stops.  The mean free path is 
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.  We have estimates for the mean free path (typical number of crystal defects observed) and the velocity (from thermodynamics), from which we derive an estimate for the collision time.
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Notice that this 
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, where crystal atomic spacing is typically a few Ångstroms.
2.
Quantum Mechanics—Electrons in a Box

Sadly, the simple free-electron model deos not give the correct temperature dependence of 
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.  Also, the free-electron model does not give the correct contribution of the conduction electrons to the total specific heat of the metal; i.e., not 
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a.
Quantum mechanics—quick review

We still assume that the conduction electrons are free, but are confined to a line segment of length, L.  The time independent Schrödinger Equation for a free particle is 
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We assume a solution of the form
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The boundary conditions are 
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The quantized energy levels are 
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If we extend this to a cubical box, then
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In addition to nx, ny, and nz, there is a spin quantum number, 
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.  Finally, the Pauli Exclusion Principle says that no two electrons in a system can have the same set of quantum numbers.
b.
Fermi energy

Because of the exclusion principle, all the electrons in the box cannot have the same energy.  The energy levels will be filled from the lowest level upward.  The highest level occupied by an electron is called the Fermi Energy, EF.  

The question is, given N and L, what is EF?  Put another way, N electrons will fill energy levels up to what n2?
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Plug this into En; 
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c.
Density of states (again)

At T = 0 K, no electrons have energy E > EF.  All the states 
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 are filled, or occupied by an electron.  Therefore,
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g(E) is the number of energy states per unit energy per unit volume.  Since all the states are occupied (up to EF), it is the same as the number of electrons per unit energy per unit volume.  Consequently, the average energy of the N electrons is
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d.
Zero point energy

Classically, 
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 at T = 0K.  But now, 
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, all because no two electrons can be in exactly the same state.

3.
Fermi-Dirac Statistics

a.
Ferni-Dirac distribution

At T = 0, all energy states up to EF are occupied by electrons, one to each energy state.  A graph of the probability that the state of energy E is occupied looks like this:
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Now, if T > 0, only those electrons in states of 
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 can jump to an energy state higher than EF.  The distribution would look like this:
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The functional form of this distribution is 
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b.
Specific heat of the conduction electrons
Approximately, only 
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E

kT

 of the conduction electrons are affected by an increase in temperature.  Each of them, on average, absorbs an energy kT.  The average thermal emergy per mole of electrons is roughly 
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, and << R.  For a gas of particles, even confined to a box, we’d expect 3R.
B.
Bands
Now we need to incorporate the influence of the lattice atoms on the conduction electrons.  That is, in addition to being confined to a box of volume, V, the conduction electrons interact with the atoms that form the crystal.
1.
Bloch Function

Apart from small vibrations, the atoms are arranged in a periodic lattice.

a.
Schrödinger equation for a crystal
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b.
Bloch theorem

Claim:  
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Proof:  We can always write 
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 is called a Bloch Function.  The Bloch function is a traveling wave, modulated by the 
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.  The electron is shared in effect by the whole crystal, not localized close to any one atom.

2.
Energy Bands

a.
“Solve” the Schrödinger equation
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Plug in 
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Piece by piece. . .
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Likewise for qy and qz.  
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For each value of the wave vector 
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, we would obtain a discrete set of eigen values 
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.  Put another way, for each quantum number, n, the En varies with 
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.  Therefore, rather than single discrete energy levels, we have energy bands.  Qualitatively, an energy level diagram would look like this:
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b.
Number of states ina band

Each energy state is described by a Bloch function, 
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.  How many states are there?

Take a one-dimensional case for the sake of argument, in which 
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Now, the q is the wave number of the wave function rather than of a lattice vibration.  Still, the math is the same.
The first Brillioun zone is of length 
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.  The number of q-states that fit in that reciprocal length is 
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, the number of atoms in the (1 dimensional) crystal.  Similarly in three dimensions.

To develop the discussion further, we need to make some assumption about the potential energy function, 
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.  The two cases we’ll consider are 
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3.
Nearly Free Electron Model

To explicitly solve for the wavefunction and energy levels, we need to put a specific 
[image: image387.wmf])

(

r

V

r

 into the Schrödinger equation.  In one dimension 
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a.
Energy band gaps
We start with no atoms at all, just the free conduction electrons.
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The usual plane-wave solution is
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Plot Eo vs. k.
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There is no gap between neighboring bands.  Now, we add a weak interaction with the lattice atoms.  Since the interaction is weak, we expect only slight changes in the energy levels and wavefunctions—perturbations.  [Note, in Omar, this is discussed in Section A.6, not A.7].  I.e., 
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.  The perturbation has the effect of opening gaps at the Brillouin zone boundaries 
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b.
Effective mass
Next, we consider the effect of an external electric field, 
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, on a conduction electron.  The group velocity of the wavefunction for a conduction electron is 
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This work changes the energy of the electron
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In Newton’s 2nd “Law”, we’d say that the electric force changes the momentum of the electron.  The acceleration resulting from the external force would be
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We can see that the quantity 
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 is where the mass-1 should be in the 2nd “Law.”  This is the effective mass for a conduction electron experiencing an external electric field.
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For a free electron (not in the crystal), 
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Notice that m* may be greater than or less than mo, and may even be negative!

c.
Meaning of a negative effective mass
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The curvature is the slope of the slope; a negative curvature implies a decreasing slope.  For instance, at the top of the second energy band m* < 0.  At the bottom of the third band, m* > 0.

The effective mass is an alternative conceptual device that incorporates the interaction with the crystal lattice into the conduction electron’s equation of motion.
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The FL is like a drag force that can be either (+) or (-), not only negative.  This FL arises when Fexternal is non-zero, since an external electric field will polarize the lattice atoms as well as accelerate the conduction electrons.
4.
Tight Binding Model
At the opposite extreme approximation, the crystal potential is strong—each conduction electrons is nearly bound to a lattice atom.  It moves through the crystal by tunneling from one lattice atom to another.

a.
Effective crystal potential & the Bloch function
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We start with an ordinary atomic orbital wave function, 
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.  This might be the 4s orbital of Cu, for instance.  The 
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In the tight binding model, there is little overlap of the 
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b.
Energy bands
We construct the Schrödinger equation for a conduction electron thusly:
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and
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 is the so-called overlap integral—the shift in 
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.  (This overlap integral is the origin of the exclusion principle.)
So, the single energy level, 
[image: image436.wmf]u

E

, is broadened into a band, depending on k.

[image: image437.png]



C.
Electrical Conductivity
I.

A.

4.
Point Groups & Space Groups

III.
Band Theory

B.
Bands

3.
Nearly Free Electron Model

a.
Nearly-free electrons

b.
Effective mass

c.
Negative mass?

4.
Tight Binding Model

a.
Effective crystal potential

b.
Energy bands

c.
Effective mass

C.
Electrical Conductivity

1.
Electron Dynamics

a.
Velocity of the Bloch electron

b.
Electric current

2.
Bands and Transitions

a.
Valence & conduction bands

b.
Metals, semiconductors, insulators

c.
Holes

d.
Hole current

e.
Hall effect

� EMBED Equation.3  ���





V = L3





� EMBED Equation.3  ���





�





� EMBED Equation.3  ���





�





� EMBED Equation.3  ���





Note:�E is electric field.�E is energy.
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