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I.
Wave Mechanics

A.
Wave Function

We propose to describe the motion or state of a particle by a wave function—a solution to a wave equation.

1.
Statistical Interpretation of the Wave Function

The wave function is a complex function of position (x) and of time (t), denoted 
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.  We intend that it contain a complete description of the behavior of a particle, such as an electron.

a.
Probability density
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The quantity 
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 is the probability that the particle is to be found in the interval (x,x+dx) at time t.

b.
Normalization

The probability of finding the particle someplace must be 1.0, therefore, 
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if the wave function is to represent a physically realistic particle.  That is, a wave function must be normalizable.  This boils down to the requirement that 
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.  Some wave functions satisfy the wave equation but are not normalizable.

c.
Expectation values

Imagine a large number of identical but independent regions in space.  In each region is a particle described by the wave function, 
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.  The particles and wave functions are identical.  In each of these identical systems we measure the position of the particle, x.  The average of all the independent measurements of x is
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This is called the expectation value of x.  Note that this is not the most probable value of x.  That occurs where 
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 is a maximum.  The variance of the measurements of x is
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2.
Momentum

The other dynamical variable of interest is the particle momentum, 
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.  We will want the expectation value of p, namely <p>.

a.
Velocity
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Note that 
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.  Substitute this for the time derivatives in the velocity. . .
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Note that 
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Next, integrate by parts the first term on the right hand side (r.h.s.).
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Integrate by parts again.
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So far, we have 
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However, 
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  What’s left is the expectation value of the particle velocity
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Note for the future:  
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b. Momentum operator

We define the particle momentum to be 
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We define the momentum operator to be 
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c. Uncertainty principle

The principle will be proven rigorously later; for now, we recognize that 
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Therefore, a spread in 
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 is inversely related to a spread in p.  In terms of a localized waveform,

[image: image31.png]


             [image: image32.png]& ap —>




We identify 
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Roughly stated, this is the mathematical origin of the uncertainty principle.  The particle position and momentum cannot be “known” simultaneously to arbitrary precision.

B.
The Schrödinger Equation

1.
Wave Equation

The one-dimensional wave equation is 
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a.
Solution

The wave equation has solutions of the form 
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We’ll concentrate on the complex exponential form:  
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Evidently, 
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Whence we can identify 
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b.
Energy and momentum

For a free particle, 
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, just the kinetic energy.  We can express this in terms of the frequency and wave number, since 
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Solving for the frequency, we obtain what is called a dispersion relation.
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If we substitute this for 
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 in the wave equation, we obtain the following:
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If we multiply and divide the r.h.s. by 
[image: image54.wmf]h

i

, we can see that the r.h.s. is just the momentum operator squared, divided by 2m.
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The left hand side (l.h.s.) must be the total energy operator, 
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c.
Conservative forces

For a conservative force acting on a particle, 
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We’ll just add it to the kinetic energy operator on the r.h.s. of the wave equation.
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This equation is known as the Time Dependent Schrödinger Equation.

2.
Time Independent Schrödinger Equation.

Let us say that V is independent of time.  The potential energy function is constant.

a.
Separation of variables

Assume that 
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Divide both sides by 
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The two sides must equal the same constant, namely the total energy, E.
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b.
Time solution
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This is an oscillatory solution, as we always get with a wave equation.

c.
Stationary states
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Consider the probability density.  
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.  This is constant in time, therefore it is called a stationary state.  A stationary state has a definite total energy; the uncertainty 
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Define the Hamiltonian operator 
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a constant.  If the wave function, 
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In compact form, the (Time Independent) Schrödinger equation looks like 
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3.
Free Particles and Wave Packets

For a free particle, V(x) = 0.  The wave equation is just 
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a.
General solution
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 (time dependent).

These represent harmonic waves, one traveling to the right, the other to the left along the x-axis.  The wave number is 
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Notice that 
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!  The free particle wave function is not normalizable.  However, this does not mean that a free particle cannot exist.  It does mean that a free particle does not have a definite energy, nor can it be considered to have a localizable position.

b.
Wave packets

A localized wave form can be constructed by a superposition of harmonic waves.
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It might look like this:
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The wave packet travels with a speed called the group velocity, vg.  The individual ripples within the packet travel with a speed called the phase velocity, vp.  The phase velocity is the familiar wave speed.
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c.
Group velocity

The angular frequency of a harmonic wave is 
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.  This is called a dispersion relation, because it implies that waves of different frequency travel with different wave speeds.

Let’s say that the wave packet is composed of harmonic waves with a narrow range of k-values, centered on ko.  We might expand 
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Put this in the 
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 for 
[image: image92.wmf]w

.


[image: image93.wmf](

)

(

)

(

)

(

)

(

)

ò

+¥

¥

-

×

-

×

+

-

¢

@

Y

dk

e

k

t

x

t

k

k

kx

i

o

o

o

w

w

f

p

2

1

,



[image: image94.wmf](

)

(

)

(

)

(

)

(

)

ò

+¥

¥

-

×

¢

-

×

×

¢

+

×

-

@

Y

dk

e

k

e

t

x

t

x

k

i

t

k

t

i

o

o

o

o

w

w

w

f

p

2

1

,



[image: image95.wmf](
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Evidently, the wave packet slides along the x-axis at the speed 
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Notes:  i) 
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ii) the classical speed of a particle with momentum p is 
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 is the deBroglie wavelength.

d.
Uncertainty relation

We have the wave packet and its Fourier transform:

Wave packet:  
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Transform:  
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The details depend on the exact shape of 
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Take 
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 to be the width of the central peak, where 
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For more realistically-shaped wave packets we find that 
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C.
Wells and Barriers—Non-Free Particles

1.
Square Wells

a.
Infinite


[image: image115.wmf](

)

ï

þ

ï

ý

ü

ï

î

ï

í

ì

³

<

<

£

¥

¥

=

a

x

a

x

x

x

V

0

0

0


[image: image116.png]Ve,

X‘J




We have three (3) distinct regions, because the potential energy function (potential for short) changes discontinuously.  So, we have to solve the Schrödinger Equation three (3) times.

Fortunately, for 
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Within the well, 
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The general solution is 
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That is, we expect that 
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At x = 0:  
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At x = a:  
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It follows that 
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  From this we obtain the discrete allowed energy levels for the particle confined in the well.
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Putting in the allowed values of k yields
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The n is known as the principle quantum number.  It labels the energy levels, or energy states of the particle.  Finally we need to normalize the wave function.
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Our solution is 
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 for the particle inside the well.  

Properties of the solution:


i) even or odd


ii) orthonormal

iii) form a complete set.

Note:  While 
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This form is very similar to the case of a vibrating string, fastened at both ends.

b.
Finite square well
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We find it convenient, but not necessary, to place the origin in the center of the well.
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Again, we solve the Schrödinger equation in three regions:  
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We’ll solve for the so-called bound states whose energies E < 0.


[image: image144.wmf](

)

y

y

y

E

x

V

dx

d

m

=

+

-

2

2

2

2

h


The solutions will have the same form as for the infinite well, but the k and the coefficients will differ in the three regions.
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The boundary conditions are that 
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 be continuous at x = - a and x = a.
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Before proceeding blindly to solve these simultaneous equations for A, B, C, D, E, & F (we only have 4 equations), let us notice that since E < 0, the term 
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 diverges for x < -a.  Therefore the A = 0.  Likewise, G = 0.  So we really have only four unknowns remaining.
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Put ‘em all in the same order. . .
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This system of simultaneous equations will have a solution if the determinant of the coefficients vanishes.
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Firstly, divide the 1st and 4th columns by 
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Secondly, expand on the 1st column.
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Expand the two determinants on their 3rd columns.
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Expand the 2x2 determinants.
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Rearrange.
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Now, 
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Furthermore, 
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So, we can write 
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Divide by 
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The left hand side is a quadratic in 
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Use the quadratic formula:
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We have, after all that, two sets of solutions.  We solve for k graphically.
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An allowed energy level occurs where these curves intersect.

Properties of the solution:


i) always at least one solution


ii) the allowed energies are discrete


iii) the number of solutions is finite, depending on a.


iv) +/- solutions alternate in energy (odd/even, as with the infinite well).

2.
Potential Step
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a.
Solution of the time-independent equation
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In this instance, we have two regions:  x < 0 and x > 0.  For x < 0, V = 0, so at once we can write 
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For x > 0, V = Vo.  We will assume the same mathematical form for the solution, but we may or may not get oscillatory behavior.
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Before applying the boundary conditions, we’ll solve for the 
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.  
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Evidently, 
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b.
Boundary conditions

The boundary conditions are that 
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However, we have additional information.  In the region x < 0, we have traveling harmonic waves, one incident from the left, the other reflected from the step and traveling toward the left.  These cannot be normalized, so we’ll just set A = 1.  On the other hand, in the region x > 0, the D = 0, because there is no additional barrier or interface to cause another reflection.  
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Firstly, divide them.
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Substitute this result back into the first equation.
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c. Cases

Now, consider the cases E > Vo and E < Vo.


i)
E > Vo:  
[image: image203.wmf]y

 is a traveling wave, but of differing wave number from the 


incident wave.


ii)
E < Vo:  
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 is imaginary.  Therefore 
[image: image205.wmf]y

 is a decaying exponential function.
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Here’s the funny thing.  The particle is not moving to the right for x > 0, but 

yet 
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.  There is some non-zero probability that the particle will be 

observed at an x > 0.  Classically, this is impossible.

3.
Barrier Tunneling
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In this case, we have three regions.  We can take advantage of our findings for the potential step.
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As before, 
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Solve these for A, B, R, and T any way you can. . .

Qualitatively, we have the same two cases:  E > Vo and E < Vo.
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One thing we see is that even if E < Vo, the particle probability density is not zero on the far side of the barrier.  

D.
Harmonic Oscillator

1.
Schrödinger Equation

a.
Potential energy
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b.
Hamiltonian
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Schrödinger equation
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The total energy operator is called the Hamiltonian:  
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There are two ways to solve this equation.

2.
First Way—the Algebraic Method

a.
Ladder operators

Recall that 
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We rewrite the Schrödinger equation as


[image: image223.wmf]y

y

w

E

x

m

dx

d

i

m

=

ú

ú

û

ù

ê

ê

ë

é

+

÷

ø

ö

ç

è

æ

2

2

2

2

2

1

h


Factor the thing in the square bracket.
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Note that the order is important.  If we write out the product, we must write it thusly:
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Evidently, the operators don’t factor quite as numbers do--
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The Schrödinger equation becomes
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which looks neater, anyway.

b.
Raising and lowering
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Suppose that 
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That is, if 
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 is a solution to the Schrödinger equation with energy E, then 
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c.
Ground state

The state having the lowest energy is called the ground state.  We label it 
[image: image241.wmf]o

y

.  Since it is the state of lowest energy, evidently 
[image: image242.wmf]0

=

-

o

a

y

.


[image: image243.wmf]0

2

1

=

÷

ø

ö

ç

è

æ

-

o

o

x

im

dx

d

i

m

y

w

y

h



[image: image244.wmf]2

2

o

2

constant

 

a

2

ln

x

m

o

o

o

o

o

o

e

A

x

m

xdx

m

d

m

dx

d

h

h

h

h

w

y

w

y

w

y

y

y

w

y

-

=

+

-

=

-

=

-

=

ò

ò


The ground state energy is obtained from the Schrödinger equation.
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Notice that not only is the energy discrete, but the ground state energy is not zero, but 
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d.
Energy levels
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The energy levels are uniformly spaced, and n is the principle quantum number.

The energy state functions are obtained from the raising operator:  
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3.
Second Way—the Analytical Method

a.
Asymptotic behavior of 
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b.
Sturm-Liouville equation

The Sturm-Liouville equation is one of those “well known” differential equations for which people worked out the solutions before television was invented.  By substituting the assumed 
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 into the Schrödinger equation, and making a change of variable, we’ll produce a differential equation for that unspecified function, 
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The first and second derivatives of 
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 with respect to y are
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The 
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 divides out, so we have an equation for the h(y).
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Where we have set 
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c.
Solution of the Sturm-Liouville equation

The standard tack is to assume a series solution:
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Plug this into the S-L equation, and we obtain a recursion relation for the coefficients.  We’d like to have all the sums start at the same place, as well.
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Collect the coefficients of 
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 and set equal to zero.
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Solve for 
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This result is a recursion relation for two sequences of coefficients.  Namely 
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However, an infinite series is not normalizable.  So the series must terminate at some finite number of terms; say at 
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 also.  The h(y) is a finite polynomial of degree n.  Of course, n is going to be the principle quantum number.

Through the 
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, the n is related to the total energy, E.
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These are the energy levels for the harmonic oscillator.  We have to solve finally for the h(y).

d.
Hermite polynomials

Of course, we have to get ao and a1 in order to start the recursions for the rest of the coefficients.  For that we use the normalization condition.  After that, with 
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The results are the coefficients of the Hermite Polynomials, Hn.  The first few Hermite polynomials are shown in Table 2.1 in the text.  These form a complete orthogonal set of functions.  This means that an arbitrary function can be expanded as a series of Hermite polynomials, just as any vector can be expanded in terms of the Cartesian unit vectors.  However, there are an infinite number of Hermite polynomials; they may be regarded mathematically as unit vectors in some infinite-dimensional space.

e.
Harmonic oscillator wave functions

Finally, we put the pieces together to form the harmonic oscillator wave functions.
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See Fig. 2.5 in the text.

II.
Hydrogen Atom

A.
Schrödinger Equation in Three Dimensions

1.
Hamiltonian Operator
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a.
Momentum operators
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b.
Commutation relations

A commutator is a particular combination of two operators:  
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Take a look at 
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We say that 
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Now, try 
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Repeat for all possible combinations of 
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c.
Total energy

Classically, 
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This is referred to as the Hamiltonian operator.

2.
Spherically Symmetric Potential Energy Function(s)
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a.
Spherical polar coordinates
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b.
Separate the variables
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Assume that 
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Divide both sides by RY and multiply both sides by 
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The quantities in the 
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 must separately be equal to a constant, 
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Angular equation:  
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Radial equation:  
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These have to be solved separately.

B.
Angular Momentum

Classically, 
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1.
Angular Momentum Operators

a.
Cartesian components of 
[image: image312.wmf]L
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Writing the momentum components as operators, we obtain the angular momentum operators:
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b.
Commutation relations
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You can verify these by writing them out.

The other angular momentum operator we will need is the total angular momentum squared, L2.
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2.
Angular Momentum Ladder Operators

Let us assume that f is an eigen function of both the 
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 are numbers, known as the eigen values.

a.
Raising & lowering

Define the angular momentum ladder operators as 
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Proof:  Consider the following—
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Now, consider 
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Similarly, 
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At the same time, 
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The remaining task is to evaluate the 
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 and the 
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b.
Angular momentum quantum numbers

As a vector component, 
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Solve for 
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Thus, we can identify 
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Evidently, 
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We’ll label the eigenstates according to the quantum numbers 
[image: image364.wmf]m

 and 
[image: image365.wmf]l

:


[image: image366.wmf]m

m

z

m

m

f

m

f

L

f

f

L

l

l

l

l

h

h

l

l

=

+

=

ˆ

)

1

(

ˆ

2

2


The azimuthal quantum number is 
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; the orbital quantum number is 
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The next task is to solve the Schrödinger equation for the 
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3. The Angular Solutions


[image: image370.wmf]CY

Y

Y

-

=

þ

ý

ü

î

í

ì

¶

¶

+

÷

ø

ö

ç

è

æ

¶

¶

¶

¶

2

2

2

sin

1

sin

sin

1

j

q

q

q

q

q


We need to solve for Y and evaluate the C.

a.
Separate the angles

Assume that 
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.  Substitute into the differential equation and divide both sides by Y.
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As usual, the two terms must separately be equal to a constant, 
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It can be shown that in fact 
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b.
Polar coordinates

We are using spherical polar coordinates at this point because in the Hydrogen atom the potential energy function is spherically symmetric.  Let us write the angular momentum vector in terms of polar coordinates.
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We will require also the operators 
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, so we need to write the angular unit vectors in terms of the Cartesian unit vectors, as well.
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Now, substitute these into 
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 terms.  We obtain the polar versions of the angular momentum operators.
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In terms of these, the raising and lowering operators become in polar coordinates
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Now, 
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Substitute the polar forms for the operators, as well as 
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We divide through by 
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Take those derivatives on the left hand side, and after some more algebra,
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That last line is identical to the 
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-part of the Schrödinger equation.  We can identify that 
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c.
Spherical harmonics

We have 
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.  What remains is to solve for the 
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This is a “well known” differential equation, whose solutions are the Associated Legendre Functions, 
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See Table 4.1 in the text.

So, we do not have to solve for 
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 all over from scratch.  What is left to do is to normalize the angular solution.  
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This has been done already, so we just look up the result:
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See Table 4.2 in the text.

The 
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C.
Radial Equation
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Since we have m for the azimuthal, or magnetic, quantum number, we’ll start using me for the mass of the electron.  In addition, we’ll find it convenient to make a change of variable, letting 
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Classically, we do the same thing when solving Newton’s “Law” for orbits in a gravitational field.

1.
Potential Energy

a.
Coulomb

For the Hydrogen atom, the force acting on the electron is the electrostatic Coulomb force:  The potential energy function is 
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b.
Another change of variable

To make it more confusing, but to simplify the writing, we’ll change the variable again.  Firstly, let 
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.  Now, the radial equation at least has a cleaner appearance:
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2.
Radial Solution

The construction of a solution is broken into two parts.  The first part is called the asymptotic behavior, referring to the solution at very large distance from the proton or very close to the proton.

a.
Asymptotic behavior
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Therefore, we propose that the radial solution has the form 
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b.
Series solution

We’ll need 
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In the radial equation, the common factors of 
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Collect the like terms.
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At this point, we assume that 
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The coefficient of each power of 
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 must vanish separately.


[image: image438.wmf]0

)]

1

(

2

[

2

)

1

)(

1

(

2

)

1

(

1

1

=

+

-

+

-

+

+

+

+

+

+

j

o

j

j

j

a

ja

a

j

a

j

j

l

l

r


Solve for 
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The first coefficient is determined by the normalization condition, 
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We define 
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3.
Radial Wavefunctions

Now, we work backward from 
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a.
Ground state wave function

The ground state wave function is
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Here, the 
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b.
Excited state wave functions

For 
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and 
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As they have been defined, the 
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For us, 
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After all the normalization, we end up with the wave functions for the energy states of the electron in the Hydrogen atoms:
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See Tables 4.5, 4.6, and 4.7 as well as Figure 4.4 in the text.

c.
Energy levels

The 
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 is in the total energy, E:  
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These are exactly the same energy levels obtained for the classical Bohr model of the Hydrogen atom.  However, Bohr’s model does not have 
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The ground state wave function is 
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The corresponding ground state energy is E1 = -13.6 eV.  The excited states have the energies 
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d.
Degeneracy

Recall that for any 
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.  Consequently, there may be several states whose energy is the same.  This condition is called degeneracy.  The energy levels are said to be degenerate.  For instance, let 
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 level is 1 + 3 + 5 = 9.  There are nine wave functions that have the same energy, 
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e.
Unbound states

If 
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 and is real.  But if 
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 is imaginary and we obtain free-particle oscillating solutions, with continuous energy values rather than discrete.  We speak of the continuum of energy states lying above the discrete bound states.

D.
Spin

A property of subatomic particles that Bohr did not put into his model is something called intrinsic spin.  This is a built-in property of particles, just as is mass or electric charge.  It is manifest in the magnetic moment a subatomic particle has, even neutrons.  Recall the Stern–Gerlach experiment. 

1.
Spin Angular Momentum Operators

We will define the spin operators by analogy with the orbital angular momentum.  However, the eigenstates will not be functions of angles.

a.
Spin quantum numbers

Define 
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b.
Commutation relations

Just like the angular momentum operators,


[image: image496.wmf]0

]

ˆ

,

ˆ

[

ˆ

]

ˆ

,

ˆ

[

ˆ

]

ˆ

,

ˆ

[

ˆ

}

ˆ

,

ˆ

[

2

=

=

=

=

z

y

x

z

x

z

y

z

y

x

S

S

S

i

S

S

S

i

S

S

S

i

S

S

h

h

h


2.
Spin 
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a.
Spinors

Since 
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A general spin state would expressed as a sum of spinors, but there is only two—
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If we measure the spin of the particle, we’ll get either 
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b.
Spin operators

The operators and spinors can be represented by matrices.  Let the spinors be represented by column matrices:  
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.  The operators are 2x2 square matrices, which can be figured out, knowing the eigenvalues.
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.  Carrying out the multiplications yields 
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There are also raising and lowering operators, such that 
[image: image516.wmf]-

+

-

+

-

+

=

=

c

c

c

c

h

h

S

S

ˆ

 

and

 

ˆ

.  


[image: image517.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

=

-

+

0

0

2

ˆ

 

and

 

0

1

1

0

2

ˆ

i

i

S

S

h

h

.

 III.
Selected Quantum Mechanical Issues

A.
Vector Spaces

1.
Properties

A vector space consists of a set, or group, of mathematical entities, called vectors and scalars, which obey certain rules.

a.
Addition

The sum of any two vectors is also a vector.  That is, the sum of two members of the group is another member of the same group.
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Vector addition obeys the associative law,
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b.
Scalar multiplication

The product of a scalar and a vector is also a vector in the vector space.  Scalar multiplication is associative and distributive.
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c.
Null vector & inverse vector

There exists a null vector, such that 
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 .  For every vector, there exists an inverse vector, such that 
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d.
Basis vectors & components

A vector in the vector space it is said to be linearly independent of a set of other vectors if it cannot be written as a linear combination of that set of vectors.  A basis set is a collection of linearly independent vectors that spans the vector space.  That means that every vector can be written as a linear combination of the members of this set.  The dimension of the vector space is the number of vectors in the basis set, namely n.

Given a set of basis vectors, 
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, an arbitrary vector can be written as 
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.  The {ai} are said to be components of the vector 
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 with respect to the basis 
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2.
Inner Products

a.
Properties

The inner product of two vectors 
[image: image528.wmf]a

 and 
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 is a complex number, such that:
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b.
Orthonormal vectors

A unit vector is a vector whose norm is equal to one:  
[image: image531.wmf].
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  On the other hand, two vectors are orthogonal if their inner product is zero:  
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A set of mutually orthogonal, and normalized, vectors is called an orthonormal set.
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c.
Schwarz inequality
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3.
Linear Transformations

A transformation, 
[image: image535.wmf]T
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, acts on a vector in the vector space to produce another vector.
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In the case of linear transformations, 
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a.
Matrix representation

Let 
[image: image538.wmf]a

 be some arbitrary vector (in the vector space).  
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.  Further, let a linear transformation be defined by 
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Parenthetically, there is a form of notation in which the summation signs are not used; the summation is implied by a repeated index.  I.e., 
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The elements of 
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 are defined with respect to the orthonormal basis set:  
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A linear transformation acting on a vector can be represented by the multiplication of a square matrix and a column vector (a matrix with one column), thusly
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b.
Doing things to matrices


transpose


complex conjugate


hermitian conjugate


commutator


inverse matrix


unitary matrix


similarity transformation

4.
Eigenvectors

a.
Eigen value equations
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, where 
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 is a complex number, an eigen value.  The 
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 is an eigen vector, or eigen function or eigen state of the operator, 
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.  Commonly, the transformation is known, and the tasks are to solve for the eigen values and the eigen vectors.  As illustration, consider the spin operator, 
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The equation 
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 is called the characteristic equation.  Its roots are the eigen values of the operator in the equation written in matrix form.
The eigen vectors are obtained by plugging in the known eigen values.
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b.
Hermitian transformations

B.
Formal Quantum Mechanics

1.
Postulates of Quantum Mechanics

a.
One

For a system consisting of a particle in a conservative field there is an associated wavefunction, 
[image: image554.wmf]Y

.  This wavefunction determines everything that can be known about the system, and is single valued in coordinates and time.  In general, it is a complex function, and may be multiplied by a complex number without changing its physical significance.

b.
Two

A Hermitian operator is associated with every physical observable.  The eigen vectors of such an operator form a complete orthonormal basis set in Hilbert space.  An arbitrary wavefunction can be expanded as a linear combination of eigen vectors.

c.
Three

The development of the wavefunction with time, assuming the system is undisturbed, is governed by the Schrödinger Equation.
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2.
Statistical Interpretation

a.
Measurement

Let 
[image: image556.wmf]Q
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 be the Hermitian operator corresponding to an observable physical quantity, Q.  The eigen value equation for that operator would be 
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Now consider a particle in a state 
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If a measurement of Q is made, one of the eigen values, qn will be the result.  The probability obtaining a particular qn is 
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.  When the measurement is made, the wavefunction collapses to the eigen function, 
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.  If the measurement were immediately repeated, the same qn.would be the result.

The expectation value of Q is the weighted sum over all the eigenvalues.
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This is the expected average of measurements performed on many independent identical systems.

3.
Uncertainty Principle

a.
Compatible/incompatible

b.
Uncertainty
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C.
Time Independent Perturbation Theory
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