- 4.6 $\sin 58^{\circ} = x/(5.0 \text{ m}), x = 4.2 \text{ m}.$
- 4.7 The statue is 16 m from the point of incidence, and since the ray-triangles are similar, 4 m : 16 m as 3 m : Y and Y = 12 m.
- 4.8 At the first mirror, $\theta_r = \theta_i$. For the second, $\theta'_i = 90 \theta_r = 90 \theta_i$ and $\theta'_r = \theta'_i$, so $\theta'_r = 90 \theta_i$.
- **4.9** $n_i \sin \theta_i = n_t \sin \theta_t$, $\sin 30^\circ = 1.52 \sin \theta_t$, $\theta_t = \sin^{-1}(1/3.04)$, so $\theta_t = 19^\circ 13'$.
- 4.10 $P_{\text{transverse}} = mv_i \sin \theta_i$ = $mv_i \sin \theta_t$

where "m" is the presumed mass. But $v_i = \frac{s_0}{t}, v_f = \frac{BP}{t}$. So

$$(s_0)\sin\theta_i = (BP)\sin\theta_t$$
$$\sin\theta_i = \frac{BP}{s_0}\sin\theta_t$$

The factor $\frac{BP}{s_0}$ corresponds to r_{ti} .

- 4.11 The slope of the curve is $n_{it} = n_i/n_t$. Slope $\sim 0.75/1.00$, so that $n_t \simeq 1.33$. This suggests that the dense medium is water.
- **4.12** $\theta_t = \sin^{-1}[(\sin 45^\circ)/2.42] = 17^\circ$, the angular deviation is $45^\circ 17^\circ = 28^\circ$.
- 4.13 $\theta_t = \sin^{-1}[(n_w/n_g)\sin\theta_i] = \sin^{-1}[(8/9)\sin 45^\circ] = 39^\circ$. For a ray incident in the glass at this angle, $\theta_t = \sin^{-1}[(n_g/n_w)\sin 39^\circ] = \sin^{-1}[(9/8)\sin 39^\circ] = 45^\circ$.
- **4.14** (a) $n_{ti} = n_t/n_i = (c/v_t)/(c/v_i) = v_i/v_t = \nu \lambda_i/\nu \lambda_t = \lambda_i/\lambda_t$. Therefore $\lambda_t = \lambda_i 3/4 = 9$ cm. (b) $\sin \theta_i = n_{ti} \sin \theta_t$, $\theta_t = \sin^{-1}[(3/4) \sin 45^\circ] = 32^\circ$.
- 4.15 $\lambda_t = \lambda_i/n_{ti} = 600/1.5 = 400 \text{ nm}$, violet light.
- **4.16** $1.00 \sin 55^{\circ} = n \sin 40^{\circ}$; n = 1.27 or 1.3.
- 4.17 $1.33 \sin 35^{\circ} = 1.00 \sin \theta_t$; $\theta_t = 50^{\circ}$.

Chapter 4 Solutions

- **4.18** For $\theta_i = 0$, 10, 20, 30, 40, 50, 60, 70, 80,90 degrees, $\theta_t = 0$, 6.7, 13.3, 19.6, 25.2, 30.7, 35.1, 38.6, 40.6, 41.8 degrees respectively.
- 4.19 Consider one ray on each side of the beam, with a perpendicular separation D. The width of the beam on the interface is $D\cos\theta_i$. Likewise, the width of the beam at the interface is $D'\cos\theta_t$, where D' is the perpendicular separation (width) of the rays in the glass, and $D\cos\theta_i = D'\cos\theta_t$. (4.4) $n_i\sin\theta_i = n_t\sin\theta_t$ so

$$\cos \theta_t = (1 - \sin^2 \theta_t)^{1/2}$$
$$= (1 - \sin^2 \theta_i / n_g^2)^{1/2}$$

so

$$D' = \frac{D\cos\theta_i}{\left(1 - \frac{\sin^2\theta_i}{n_g^2}\right)^{1/2}}$$

- 4.20 (4.4) $n_i \sin \theta_i = n_t \sin \theta_t$ so $\sin(60.0^\circ) = n_t \sin G_\epsilon$. Diameter of emerging beam (D) is related to the difference in horizontal displacement of red and violet light (h) by $D \cos(60.0^\circ) = h$ (See Problem 4.19). Red: $\sin \theta_{\rm red} = \sin(60.0^\circ)/n_{\rm red} = (\sqrt{3}/2)/(1.505), \theta_{\rm red} = 35.1^\circ;$ $\tan \theta_{\rm red} = h_{\rm red}/10.0 \text{ cm}$ so $h_{\rm red} = (10.0 \text{ cm}) \tan(35.1^\circ) = 7.04 \text{ cm}$. Violet: $\sin \theta_{\rm violet} = \sin(60.0^\circ)/n_{\rm violet} = (\sqrt{3}/2)/(1.545); \theta_{\rm violet} = 34.1^\circ;$ $h_{\rm violet} = (10.0 \text{ cm}) \tan(34.1^\circ) = 6.77 \text{ cm}. D = h/\cos(60.0^\circ) = (h_{\rm red} h_{\rm violet})/\cos(60.0^\circ) = (7.04 6.77)/(0.5) = 0.54 \text{ cm}.$
- **4.21** $n_a/n_w = d_A/d_R = 1/1.333 = 0.750 = 3/4.$
- **4.22** Using Figure S.4.17, $1.00 \sin 35^{\circ} = 1.50 \sin \theta_{t1}$; $\theta_{t1} = 22.48^{\circ}$ and $\cos 22.48^{\circ} = (2.00 \text{ cm})/L$; L = 2.16 cm or 2.2 cm.
- **4.23** $\sin \theta_i = n \sin \theta_i / 2$; since $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, $\sin \theta_i = 2 \sin(\theta_i / 2) \cos(\theta_i / 2)$ and so setting these two expressions equal we get

1.70
$$\sin(\theta_i/2) = 2\sin(\theta_i/2)\cos(\theta_i/2); \quad \cos\theta_i/2 = 0.85;$$

31.79° = $\theta_i/2; \quad \theta_i = 63.6$ °.

- 4.24 The glass will change the depth of the object from d_R to d_A , where $d_A/d_R = 1.00/1.55$; but $d_R = 1.00$ mm; hence, $d_A = 0.645$ mm and the camera must be raised 1.00 mm -0.645 mm =0.355 mm.
- **4.25** $d_{A1}/d_{R1} = 1.50/1.33$; $d_{R1} = 1.00$ m; $d_{A1} = 1.1278$ m; $d_{R2} = d_{A1} + 0.02$ m; $d_{A2}/d_{R2} = 1.00/1.50$; $d_{A2} = 1.3278(1.00/1.50) = 0.885$ m.
- 4.26 The number of waves per unit length along \overline{AC} on the interface equals $(\overline{BC}/\lambda_i)/(\overline{BC}\sin\theta_i) = (\overline{AD}/\lambda_t)/(\overline{AD}\sin\theta_t)$. Snell's law follows on multiplying both sides by c/ν .
- **4.27** With the origin in the plane of incidence, z = 0; with the origin on the interface y = 0 so $(\vec{k_i} \cdot \vec{r}) \rightarrow k_{ix}x$

$$(\vec{k}_r \cdot \vec{r} + \epsilon_r) \to k_{rx}x + \epsilon_r$$

 $(\vec{k}_t \cdot \vec{t} + \epsilon_t) \to k_{tr}x + \epsilon_t$

and as $\epsilon_r = \epsilon_t = 0$, Eq. (4.19) becomes $k_{ix} = k_{rx} = k_{tx}$ or $k_i \sin \theta_i = k_r \sin \theta_r = k_t \sin \theta_t$. Since $k = 2\pi/\lambda$

$$\frac{\sin \theta_i}{\lambda_i} = \frac{\sin \theta_t}{\lambda_t},$$

which is the condition derived in Problem (4.26) for wave front continuity.

- 4.28 Let τ be the time for the wave to move along a ray from b_1 to b_2 , from a_1 to a_2 , and from a_1 to a_3 . Thus $\overline{a_1a_2} = \overline{b_1b_2} = v_i\tau$ and $\overline{a_1a_3} = v_i\tau$. $\sin \theta_i = \overline{b_1b_2}/\overline{a_1b_2} = v_i/\overline{a_1b_2}$, $\sin \theta_t = \overline{a_1a_3}/\overline{a_1b_2} = v_t/\overline{a_1b_2}$, $\sin \theta_r = \overline{a_1a_2}/\overline{a_1b_2} = v_i/\overline{a_1b_2}$, $\sin \theta_i / \sin \theta_t = v_i/v_t = n_t/n_i = n_{ti}$ and $\theta_i = \theta_r$.
- 4.29 $n_i \sin \theta_i = n_t \sin \theta_t$, $n_i(\hat{k}_i \times \hat{u}_n) = n_t(\hat{k}_t \times \hat{u}_n)$, where \hat{k}_i , \hat{k}_t are unit propagation vectors. Thus $n_t(\hat{k}_t \times \hat{u}_n) n_i(\hat{k}_i \times \hat{u}_n) = 0$, $(n_t\hat{k}_t n_i\hat{k}_i) \times \hat{u}_n = 0$. Let $n_t\hat{k}_t n_i\hat{k}_i = \vec{\Gamma} = \Gamma\hat{u}_n$. Γ is often referred to as the astigmatic constant; Γ is the difference between the projections of $n_t\hat{k}_t$ and $n_i\hat{k}_i$ on \hat{u}_n ; in other words, take the dot product $\vec{\Gamma} \cdot \hat{u}_n$: $\Gamma = n_t \cos \theta_t n_i \cos \theta_i$.