Chapter 10 Solutions

- **10.1** $(R + \ell)^2 = R^2 + a^2$; therefore $R = (a^2 \ell^2)/2\ell \approx a^2/2\ell$, $\ell R = a^2/2$, so for $\lambda \ll \ell$, $\lambda R \gg a^2/2$. Therefore $R = (1 \times 10^{-3})^2 10/2\lambda = 10$ m.
- **10.2** $E_0/2 = R \sin(\delta/2), E = 2R \sin(N\delta/2)$ chord length;

$$E = [E_0 \sin(N\delta/2)]/\sin(\delta/2), \quad I = E^2.$$

- 10.3 A "constant" phase shift is added due to the angle of the incident wave reaching the ends of the slit at different phase, so that (10.11) becomes $r = R y(\sin \theta \sin \theta_i) + \dots$ This constant carries through the integration, so that the definition of β in 10.18 (or 10.14) becomes $\beta = (kb/2)(\sin \theta \sin \theta_i)$.
- 10.4 $d \sin \theta_m = m\lambda$, $\theta = N\delta/2 = \pi$, $7 \sin \theta = (1)(0.21)$, $\delta = 2\pi/N = kd \sin \theta$, $\sin \theta = 0.03$ so $\theta = 1.7^{\circ}$. For $\sin \theta = 0.0009$, $\theta = 3$ min.
- 10.5 Converging spherical wave in image space is diffracted by the exit pupil.
- 10.6 $\beta = \pm \pi$, $\sin \theta = \pm \lambda/b \approx \theta$, $L\theta \approx \pm L\lambda/b$, $L\theta \approx \pm f_2\lambda/b$.
- 10.7 Far field if $R > b^2/\lambda$, $b^2/\lambda = (1 \times 10^{-4} \text{ m})^2/(4.619 \times 10^{-7} \text{ m})^2 = 0.02$. Yes, far field. $\sin \theta_1 = \lambda/b$.

$$\theta_1 = \sin^{-1}(\lambda/b) = \sin^{-1}(4.619 \times 10^{-7} \text{ m/1} \times 10^{-4} \text{ m}) = 0.26^{\circ}.$$

Angular width = $2\theta_1 = 0.52^{\circ}$.

10.8 $b\sin\theta_m = m\lambda$, so,

$$b = m\lambda/\sin\theta_m = 10(1.1522 \times 10^{-6} \text{ m})/\sin(6.2^\circ) = 1.07 \times 10^{-4} \text{ m}.$$

In water, $b \sin \theta_m = m\lambda$, where $\lambda = n_{\text{air}} \lambda_o / n_{\text{water}}$.

$$\sin \theta_m = m n_{\text{air}} \lambda_o / n_{\text{water}} / b;$$

 $\theta_m = \sin^{-1} [10(1.00029)(1.1522 \times 10^{-6} \text{ m}) / (1.33)(1.07 \times 10^{-4} \text{ m})]$
 $= 4.7^{\circ}.$

- 10.9 $\lambda = (20 \text{ cm}) \sin 36.87^{\circ} = 12 \text{ cm}.$
- 10.10 $\alpha = (ka/2)\sin\theta$, $\beta = (kb/2)\sin\theta$. a = mb, $\alpha = m\beta$, $\alpha = m2\pi$, $N = \text{number of fringes} = \alpha/\pi = m2\pi/\pi = 2m$.
- **10.11** Is $R > b^2/\lambda$?, b = slit width.

$$b^2 \lambda = (1 \times 10^{-4} \text{ m})^2 / (5 \times 10^{-7} \text{ m}) = .02 \text{ m} \ll 2.5 \text{ m}.$$

Fraunhofer.

(Half) angular width of central maximum from

$$\beta = \pi = (kb/2)\sin\theta_1.$$

 $\sin\theta_1 = 2\pi/kb = \lambda/b = (5 \times 10^{-7} \text{ m})/(1 \times 10^{-4} \text{ m}); \quad \theta_1 = 0.29^{\circ}.$

To what order Young's fringe does θ_1 correspond?

$$\alpha = m'\pi = (ka/2)\sin\theta_1$$
. $m' = (ka/2\pi)\sin\theta_1 = (a/\lambda)\sin\theta_1$
= $(2 \times 10^{-4} \text{ m})/(5 \times 10^{-7} \text{ m})\sin(0.29^\circ) = 2$.

So there are 4 "Young's Fringes" in the central maximum.

10.12
$$\alpha = 3\pi/2N = \pi/2$$
, $I(\theta) = I(0)[(\sin \beta)/\beta]^2/N^2$ and $I/I(0) \approx 1/9$.

10.13 (10.17) $I(\theta) = I(0)(\sin \beta/\beta)^2$, where $\beta \equiv (kD/2)\sin \theta$. "Miniscule Area" corresponds to the limit $D \to 0$. As $D \to 0$, $\beta \to 0$, so

$$\lim_{D\to 0} I(\theta) = \lim_{\beta\to 0} (I(0)(\sin\beta/\beta)^2);$$

- As $\beta \to 0$, $\operatorname{sinc}(\beta) \to 1$, so $\lim_{D \to 0} I(\theta) = I(0)$, i.e., same in all directions.
- **10.14** (from 10.41) $\tilde{E} \propto \int \int e^{ik(Yy+Zz)/R} dS$. and $I(Y,Z) \propto \langle \tilde{E}^2 \rangle$. If \tilde{E} is an even function of (Y,Z), $\tilde{E}(-Y,-Z)=\tilde{E}(Y,Z)$. If \tilde{E} is an odd function of (Y,Z), $\tilde{E}(-Y,-Z)=-\tilde{E}(Y,Z)$, but I(-Y,-Z)=I(Y,Z).
- 10.15 If the aperture is symmetrical about a line, the pattern will be symmetrical about a line parallel to it. Moreover, the pattern will be symmetrical about yet another line perpendicular to the aperture's symmetry axis. This follows from the fact that Fraunhofer patterns have a center of symmetry.
- 10.16 For the solution to this problem, please refer to the textbook.
- 10.17 Three parallel short slits.
- 10.18 Two parallel short slits.
- 10.19 An equilateral triangular hole.
- 10.20 A cross-shaped hole.
- **10.21** The *E*-field of a rectangular hole.
- 10.22 From section 10.2.5, first "ring" (maximum) occurs for u = kaq/R = 5.14. Interpolating from Table 10.1, $J_1(5.14) \simeq -0.33954$ From (10.55) $I/I(0) = \left[\frac{2J_1(u)}{u}\right]^2 = \left[\frac{2(-0.33954)}{5.14}\right]^2 = 0.0175$
- **10.23** From Eq. (10.58), $q_1 \approx 1.22(f/D)\lambda \approx \lambda$.
- 10.24 For the solution to this problem, please refer to the textbook.
- 10.25 (10.57) $q_1 = 1.22(R\lambda/2a)$ = 1.22[(3.76 × 10⁸ m)(6.328 × 10⁻⁷ m)]/2[1 × 10⁻³ m] = 1.45 × 10⁵ m.

- 9.4 A bulb at S would produce fringes. We can imagine it as made up of a very large number of incoherent point sources. Each of these would generate an independent pattern, all of which would then overlap. Bulbs at S_1 and S_2 would be incoherent and could not generate detectable fringes.
- 9.5 $y_m = sm\lambda/a \approx 14.5 \times 10^{-2} \text{ m}$ and $\lambda = 0.0145 \text{ m}$: $\nu = v/\lambda = 23.7 \text{ kHz}$. This is Young's Experiment with the sources out-of-phase.
- 9.6 This is comparable to the "two-slit" configuration, (Figure 9.8), so we can use (9.29) $a \sin \theta_m = m\lambda$ (θ_m may not be "small"). Let m = 1, $\sin \theta = y/(s^2 + y^2)^{1/2}$, so,

$$ay = \lambda (s^2 + y^2)^{1/2};$$
 $(a^2 - \lambda^2)y^2 = \lambda^2 s^2;$
 $y = \lambda s/(a^2 - y^2)^{1/2}.$ $c = v\lambda,$

so
$$\lambda = c/v = (3 \times 10^8 \text{ m/s})/(1.0 \times 10^6 \text{ Hz}) = 300 \text{ m}.$$

 $y = (300 \text{ m})(2000 \text{ m})/((600 \text{ m})^2 - (300 \text{ m})^2)^{1/2} = 1.15 \times 10^3 \text{ m}.$

9.7 (a) $r_1 - r_2 = \pm \lambda/2$, hence $a \sin \theta_1 = \pm \lambda/2$ and

$$\theta_1 \approx \pm \lambda/2a = \pm (1/2)(632.8 \times 10^{-9} \text{ m})/(0.220 \times 10^{-3} \text{ m})$$

= $\pm 1.58 \times 10^{-3} \text{ rad}$,

or since

$$y_1 = s\theta_1 = (1.00 \text{ m})(\pm 1.58 \times 10^{-3} \text{ rad}) = \pm 1.58 \text{ mm}.$$

- (b) $y_5 = s5\lambda/a = (1.00 \text{ m})5(632.8 \times 10^{-9})/(0.200 \times 10^{-3} \text{ m}) = 1.582 \times 10^{-2} \text{ m}$. (c) Since the fringes vary as cosine-squared and the answer to (a) is half a fringe width, the answer to (b) is 10 times larger.
- 9.8 θ_m is "small," so we can use (9.28) $\theta_m = m\lambda/a$, θ_m is radian, $a = m\lambda/\theta_m = [4(6.943 \times 10^{-7} \text{ m})]/[1^\circ(2\pi \text{ rad}/360^\circ)] = 1.59 \times 10^{-4} \text{ m}.$
- 9.9 $\Delta y \simeq (s/a)\lambda$, so, $s = a\Delta y/\lambda = [(1.0 \times 10^{-4} \text{ m})(10 \times 10^{-3} \text{ m})]/(4.8799 \times 10^{-7} \text{ m}) = 2.05 \text{ m}.$

- 9.10 (9.28) $\theta_m = m\lambda/a$. Want $\theta_{1,\text{red}} = \theta_{2,\text{violet}}$; (1) $\lambda_{\text{red}}/a = (2)\lambda_{\text{violet}}/a$; $\lambda_{\text{violet}} = 390 \text{ nm}$.
- 9.11 Follow section (9.3.1), except that (9.26) becomes $r_1 r_2 = (2m' 1)(\lambda/2)$ for destructive interference, where $m' = \pm 1, \pm 2, \ldots$, so that (2m' 1) is an odd integer. This leads to an expression equivalent to (9.28), $\theta_{m'} = (2m 1)\lambda/2a$.
- 9.12 Follow section (9.3.1), except that (9.26) becomes $r_1 r_2 + \Lambda = m\lambda$, where $\Lambda = \text{Optical path differences in beam. Following } r_1$, $\Lambda = nd$ (for θ_m "small").

$$(r_1 - r_2) = m\lambda - \Lambda; \quad a\theta_m = m\lambda - nd; \quad \theta_m = (m\lambda - nd)/a.$$

- 9.13 As in section (9.3.1), we have constructive interference when $OPD = m\lambda$. There is an added OPD due to the angle, θ , of the plane wave equal to $a \sin \theta$, so (9.26) becomes $r_1 r_2 + a \sin \theta = m\lambda$. (9.24) $\theta_m \simeq y/s$ and (9.25) $r_1 r_2 \simeq ay/s$ are unchanged, for small θ_m so $r_1 r_2 = m\lambda a \sin \theta = a(y/s) = a\theta_m$; $\theta_m = (m\lambda/a) \sin \theta$.
- 9.14 (9.27) $y_m = (s/a)m\lambda$; $y_{1,red} = [(2.0 \text{ m})/(2.0 \times 10^{-4} \text{ m})](1)(4 \times 10^{-7} \text{ m})$ = $4.0 \times 10^{-3} \text{ m}$. $y_{1,violet} = [(2.0 \text{ m})/(2.0 \times 10^{-4} \text{ m})](2)(6 \times 10^{-7} \text{ m}) = 12.0 \times 10^{-3} \text{ m}$. Distance = $8.0 \times 10^{-3} \text{ m}$.
- 9.15 $r_2^2 = a^2 + r_1^2 2ar_1\cos(90^\circ \theta)$. The contribution to $\cos \delta/2$ from the third term in the Maclaurin expansion will be negligible if

$$(k/2)(a^2\cos^2\theta/2r_1) \ll \pi/2;$$
 therefore $r_1 \ll a^2/\lambda$.

9.16 $E = mv^2/2$; $v = 0.42 \times 10^6$ m/s; $\lambda = h/mv = 1.73 \times 10^{-9}$ m; $\Delta y = s\lambda/a = 3.46$ mm.

9.21 From Problem 9.19, $a = 2d(n-1)\alpha$; s = 2d, so d = 1m.

$$\Delta y = (s/a)\lambda = s\lambda/2d(n-1)\alpha; \quad \alpha = s\lambda/2d(n-1)\Delta y$$

= $[(2m)(5.00 \times 10^{-7} \text{ m})]/[2(1 \text{ m})(1.5-1)(5 \times 10^{-4} \text{ m})] = 0.002 \text{ rad.}$

9.22
$$\Delta y = s\lambda_0/2d\alpha(n-n')$$
.

9.23
$$\Delta y = (s/a)\lambda$$
, $a = 10^{-2}$ cm, $a/2 = 5 \times 10^{-3}$ cm.

9.24
$$\delta = k(r_1 - r_2) + \pi$$
 Lloyd's mirror,

$$\delta = k(a/2\sin\alpha - [\sin(90^{\circ} - 2\alpha)]a/2\sin\alpha) + \pi,$$

$$\delta = ka(1 - \cos 2\alpha)/2\sin\alpha + \pi,$$

maximum occurs for $\delta = 2\pi$ when $\sin \alpha (\lambda/a) = (1 - \cos 2\alpha) = 2\sin^2 \alpha$. First maximum $\alpha = \sin^{-1}(\lambda/2a)$.

9.25 E_{1r} is reflected once. $E_{1r} = E_{oi} \ r_{\theta=0}$ (see 4.47)

= $E_{oi}(n-1)/(n+1)$ = $E_{oi}(1.52-1)/(1.52+1)$ = $0.206E_{oi}$. E_{2r} is transmitted once, reflected once, then transmitted.

$$E_{2r} = E_{oi}(t_{\theta=0})(r'_{\text{glass-air}})(t'_{\text{glass-air}}) = E_{oi}[2/(1+n)][(1-n)/(1+n)][2n/(n+1)] = 4n(1-n)/(n+1)^3 = E_{oi}[4(1.52)(1-1.52)]/(1+1.52)^3 = -0.198E_{oi},$$
 (see 4.48) (- indicates π phase changed).

 E_{3r} is transmitted, reflected 3 times (internally), and then transmitted.

$$E_{3r} = E_{oi}t(r')^{3}t' = E_{oi}[2/(1+n)][(1-n)/(1+n)]^{3}[(2n)/(n+1)]$$

$$= [4n(1-n)^{3}]/(n+1)^{5} = E_{oi}[4(1.52)(1-1.52)^{3}]/(1.52+1)^{5}$$

$$= -0.008E_{oi}$$

for water in air.

$$E_{1r} = E_{oi}(1.333 - 1)/(1.333 + 1) = 0.143E_{oi}.$$

$$E_{2r} = E_{oi}[4(1.333)(1 - 1.333)]/(1 + 1.333)^{3} = -0.140E_{oi}.$$

$$E_{3r} = E_{oi}[4(1.333)(1 - 1.333)^{3}]/(1.333 + 1)^{5} = -0.003E_{oi}.$$

- **9.26** Here 1.00 < 1.34 < 2.00, hence from Eq. (9.36) with m = 0, d = (0 + 1/2)(633 nm)/2(1.34) = 118 nm.
- 9.27 (9.36) $d\cos\theta_t = (2m+1)(\lambda_f)/4$ for a maximum at (near) normal incidence, and taking m = D (lowest value)

$$d = \lambda f/4 = \lambda_o/4n = (5.00 \times 10^{-7} \text{ m})/4(1.36) = 9.2 \times 10^{-6} \text{ m}.$$

- **9.28** (9.37) $d \cos \theta_t = 2m(\lambda_f/4)$ for minimum reflection $= 2m(\lambda_o/n)$ at $\theta \simeq 0$, $\lambda_o = nd/2m = [(1.34)(550.0 \text{ nm})]/2 \text{ m} = 368.5(1/m) \text{ nm}$, $m = 1, 2, 3, \ldots$ or $\lambda_o = 368.5 \text{ nm}$, 184.25 nm, 122.83 nm,....
- 9.29 Eq. (9.37) $m = 2n_f d/\lambda_0 = 10{,}000$. A minimum, therefore central dark region.
- 9.30 The fringes are generally a series of fine jagged bands, which are fixed with respect to the glass.
- 9.31 $x^2 = d_1[(R_1 d_1) + R_1] = 2R_1d_1 d_1^2$. Similarly $x^2 = 2R_2d_2 d_2^2$. $d = d_1 d_2 = (x^2/2)(1/R_1 1/R_2), d = m\lambda_f/2$. As $R_2 \to \infty$, x_m approaches Eq. (9.43).
- **9.32** (9.42) $x_m = [(m+1/2)\lambda_f R]^{1/2}$, air film, $n_f = 1$, so $\lambda_f = \lambda_o$. $R = x_m^2/(m+1/2)\lambda_o = (0.01 \text{ m})^2/(20.5)(5 \times 10^{-7} \text{ m}) = 9.76 \text{ m}$.
- **9.33** $\Delta x = \lambda_f/2\alpha$, $\alpha = \lambda_0/2n_f\Delta x$, $\alpha = 5 \times 10^{-5}$ rad= 10.2 seconds.
- 9.34 (9.40) $\Delta x = \lambda_f/2\alpha$ for fringe separation where $\alpha = d/x$. $\Delta x = \lambda_f/2(d/x) = x\lambda_f/2d$. Number of fringes = (length)/(separation) = $x/\Delta x$ so,

$$x/\Delta x = 2d/\lambda_f = [2(7.618 \times 10^{-5} \text{ m})]/(5.00 \times 10^{-7} \text{ m}).$$

- 9.35 A motion of $\lambda/2$ causes a single fringe pair to shift past, hence $92\lambda/2 = 2.53 \times 10^{-5}$ m and $\lambda = 550$ nm.
- **9.36** $\Delta d = N(\lambda_o/2) = (1000)(5.00 \times 10^{-7} \text{ m})/2 = 2.50 \times 10^{-4} \text{ m}.$