Pre-Engineering 220

Introduction to MatLab® &
Scientific Programming

J Kiefer

Gottfried W. Leibnitz:

It is unworthy for excellent men to lose hours like slaves in the labour of calculation which could be safely relegated to anyone else if machines were used.
© 2013

Table of Contents

1Table of Contents

3I.
Introduction

3A.
Numerical Methods or Numerical Analysis

31.
Numerical Analysis

32.
Newton’s Method for Solving a Nonlinear Equation—an example

53.
Series

54.
Error

6B.
Programming

61.
Program Design

62.
Branching

63.
Loops

64.
I/O

75.
Precision Issues

76.
Debugging

8II.
MatLab®

8A.
Program Features

81.
Commands

102.
Arrays

113.
Array Operations

11B.
Files

111.
m-files

122.
Script files

123.
Function files

13C.
Plots

131.
Two Dimensional Graphs (pp. 133-158

132.
Three Dimensional Graphs

14D.
Programs

141.
Branches

162.
Loops (pp. 190-200)

173.
Input/output (pp 114-118)

18III.
Numerical Solution of Nonlinear Equations

18A.
Non-Linear Equations—one at a time

181.
The Problem

182.
Bisection

193.
Newton’s Method or the Newton-Raphson Method

204.
Secant Method

205.
Hybrid Methods

21B.
Systems of Nonlinear Equations

211.
Newton-Raphson

212.
Implicit Iterative Methods

23IV.
Linear Algebra

23A.
Matrix Arithmetic

231.
Matrices

232.
Addition & Subtraction

233.
Multiplication

244.
Inverse Matrix

25B.
Simultaneous Linear Equations

251.
The Problem

252.
Gaussian Elimination

263.
Matrix Operations

284.
Gauss-Jordan Elimination

30C.
Iterative Methods

301.
Jacobi Method

312.
Gauss-Seidel Method

32D.
Applications

321.
Electrical Circuit

332.
Truss System

34V.
Interpolation and Curve Fitting

34A.
Polynomial Interpolation

341.
Uniqueness

352.
Newton’s Divided Difference Interpolating Polynomial

38B.
Least Squares Fitting

381.
Goodness of Fit

382.
Least Squares Fit to a Polynomial

403.
Least Squares Fit to Non-polynomial Function

41MatLab® Sidelight Number One

411.
Polynomials

422.
Curve Fitting & Interpolation

43VI.
Integration

43A.
Newton-Cotes Formulæ

431.
Trapezoid Rule

442.
Extension to Higher Order Formulæ

47B.
Numerical Integration by Random Sampling

471.
Random Sampling

482.
Samples of Random Sampling

483.
Integration

53MatLab® Sidelight Number Two

531.
Nonlinear Equations

532.
Integration

55VII.
Ordinary Differential Equations

55A.
Linear First Order Equations

551.
One Step Methods

562.
Error

58MatLab® Sidelight Number Three

581.
First Order Ordinary Differential Equations (ODE)

59B.
Second Order Ordinary Differential Equations

591.
Reduction to a System of First Order Equations

602.
Difference Equations

I.
Introduction

A.
Numerical Methods or Numerical Analysis

1.
Numerical Analysis

a.
Definition

“Concerned with solving mathematical problems by the operations of arithmetic.” That is, we manipulate (
[image: image1.wmf]¸

´

-

+

,

,

/

, etc.) numerical values rather than derive or manipulate analytical mathematic expressions (
[image: image2.wmf]ò

x

x

e

dx

dx

d

b

x

ln

,

,

,

,

, etc.).

We will be dealing always with approximate values rather than exact formulæ.

b.
History

Recall the definition of a derivative in Calculus:

[image: image3.wmf])

(

lim

0

x

g

x

f

dx

df

x

=

D

D

=

®

D

,

where
[image: image4.wmf])

(

)

(

1

2

x

f

x

f

f

-

=

D

 and
[image: image5.wmf]1

2

x

x

x

-

=

D

. We will work it backwards, using
[image: image6.wmf]x

f

dx

df

D

D

@

.

In fact, before Newton and Leibnitz invented Calculus, the numerical methods were the methods. Mathematical problems were solved numerically or geometrically, e.g., Kepler and Newton with their orbits and gravity. Many of the numerical methods still used today were developed by Newton and his predecessors and contemporaries.

They, or their “computers,” performed numerical calculations by hand. That’s one reason it could take Kepler so many years to formulate his “Laws” of planetary orbits. In the 19th and early 20th centuries adding machines were used, mechanical and electric. In business, also, payroll and accounts were done by “hand.”

Today, we use automatic machines to do the arithmetic, and the word computer no longer refers to a person, but to the machine. The machines are cheaper and faster than people; however, they still have to be told what to do, and when to do it—computer programming.

2.
Newton’s Method for Solving a Nonlinear Equation—an example

a.
Numerical solution

Let’s say we want to evaluate the cube root of 467. That is, we want to find a value of x such that
[image: image7.wmf]467

3

=

x

. Put another way, we want to find a root of the following equation:

[image: image8.wmf]0

467

)

(

3

=

-

=

x

x

f

.

[image: image446.png]A

£

If f(x) were a straight line, then
[image: image9.wmf](

)

(

)

0

)

(

)

(

1

1

=

-

=

+

=

o

o

o

x

x

dx

x

x

df

x

f

x

f

.

In fact,
[image: image10.wmf]0

)

(

1

¹

x

f

, but let’s say that
[image: image11.wmf]0

)

(

1

@

x

f

 and solve for x1.

[image: image12.wmf](

)

(

)

(

)

(

)

o

o

o

o

o

o

x

f

x

f

x

dx

x

df

x

f

x

f

x

x

¢

-

@

-

+

=

)

(

1

1

.

Note that we are using
[image: image13.wmf]dx

x

x

df

x

f

o

o

)

(

)

(

=

=

¢

.

Having now obtained a new estimate for the root, we repeat the process to obtain a sequence of estimated roots which we hope converges on the exact or correct root.

[image: image14.wmf](

)

(

)

1

1

1

2

x

f

x

f

x

x

¢

-

@

[image: image15.wmf](

)

(

)

2

2

2

3

x

f

x

f

x

x

¢

-

@

etc.

In our example,
[image: image16.wmf]467

)

(

3

-

=

x

x

f

 and
[image: image17.wmf]2

3

)

(

x

x

f

=

¢

. If we take our initial guess to be
[image: image18.wmf]6

=

o

x

, then by iterating the formula above, we generate the following table:

	i
	
[image: image19.wmf]i

x

	
[image: image20.wmf])

(

i

x

f

	
[image: image21.wmf])

(

i

x

f

¢

	0
	6
	-251
	108

	1
	8.324
	109.7718
	207.8706

	2
	7.796
	6.8172
	182.3316

	3
	7.759
	0.108
	0.0350

[image: image22.wmf](

)

(

)

32407

.

8

108

251

6

1

1

=

-

-

=

¢

-

@

o

o

o

x

f

x

f

x

x

[image: image23.wmf](

)

(

)

79597

.

7

8706

.

207

7768

.

109

32407

.

8

1

1

1

2

=

-

=

¢

-

@

x

f

x

f

x

x

[image: image24.wmf](

)

(

)

75858

.

7

33156

.

182

817273

.

6

79597

.

7

2

2

2

3

=

-

=

¢

-

@

x

f

x

f

x

x

[Note: The pocket calculator has a (yx) button, but a computer may do
[image: image25.wmf]x

x

x

×

×

 to get x3.]

b.
Analytical solution

How might we solve for the cube root of 467 analytically or symbolically? Take logarithms.

[image: image26.wmf]467

3

=

x

[image: image27.wmf]467

ln

ln

3

=

x

[image: image28.wmf]467

ln

3

1

ln

=

x

[image: image29.wmf]3

467

ln

e

x

=

= 7.758402264. . .

We used the (ln) button on our pocket calculator, followed by the (ex) button. In earlier times, we’d have used log tables. But, whence cometh those tables and how does the calculator evaluate ln 467 or e2.0488?

3.
Series

[image: image30.wmf]L

+

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

-

+

-

=

3

2

1

3

1

1

2

1

1

ln

x

x

x

x

x

x

x

[image: image31.wmf]L

+

-

+

-

=

!

x

!

x

!

x

x

x

sin

7

5

3

7

5

3

[image: image32.wmf]L

+

+

+

+

+

=

!

4

!

3

!

2

1

4

3

2

x

x

x

x

e

x

The infinite series are exact. However, in practice we always keep a finite number of terms. In principle, we can achieve arbitrary precision, if we have the necessary patience. Pocket calculators and computer programs add up enough terms in a series to achieve a specified precision, say 8 or 16 significant digits.

4.
Error

In this context, the term error does not refer to a mistake. Rather, it refers to the ideas of deviation or of uncertainty. Every measured value is uncertain, according to the precision of the measuring instrument. Every computed value is uncertain, according to the number of significant digits carried along or according to the number of terms retained in the summation of a series. Consequently, all numerical solutions are approximate.

Oftentimes, in discussing an example problem, the correct exact solution is known, so it is possible to determine how an approximate numerical solution deviates from that exact solution. Indeed, algorithms are often tested by applying them to problems having known exact solutions. However, in real life, we don’t know the correct exact solution. We can’t know how far our approximate solutions deviate from the correct, exact, but unknown solution. In other words, we have to approximate the solution to a problem, but also we can only estimate the error.

Fortunately, we have means of estimating error. A goodly portion of the discussion in a Numerical Methods textbook is devoted to rigorous estimation of error. In this course, we won’t concern ourselves with a detailed discussion of error analysis. Nonetheless, we want to be always aware of the error issue, keeping in mind at least qualitatively the limitations of a numerical solution. From time to time in the paragraphs that follow some aspects of the error involved with a particular algorithm will be briefly discussed.

B.
Programming

The computer carries out the tedious arithmetic, but it must be told what to do. That is the function of a computer program. A program may be written in one of any number of programming languages, however there are certain features or issues that all languages have in common.

1.
Program Design

a.
Stages

Conception—define the problem

Develop the algorithm—map out or outline the solution

Code—write the program

Debug & verify—trace the program; perform trial runs with known results; correct logical
& syntax errors

b.
Building blocks

Sequential operations—instructions done one after the other in a specified order

Branching operations—selecting alternative sequences of operations

Looping operations—repeating subsets of operations

I/O operations—reading and writing data

2.
Branching

a.
Simple yes or no—select between just 2 alternative actions

b.
Nested branches—a sequence of decisions or branches; decision tree

c.
Select case—more than two alternative actions

3.
Loops

a.
Counted loop—a section of code is executed a specified number of times

b.
Conditional loop—a section of code is iterated until a specified condition is met

c.
“Infinite’ loop—the condition for ending the loop never is encountered, so the program never ends

4.
I/O

a.
Input—keyboard or data file

b.
Output—monitor, output file, printer; numbers, text, graphics

5.
Precision Issues

a.
Binary

The computer does its arithmetic with binary numbers, that is, base-2. E.g., 0, 1, 10, 11, 100, 101, 110, 111, etc. We are accustomed to working and thinking with base-10 numbers. In producing the machine language code (the “executable”) and carrying out calculations, all numerical values are translated from base-10 to base-2 then back again for output. Usually, we don’t need to care about this. However, it can be a source of loss of precision in our numerical values because the machine stores values with only finite precision.

b.
Precision

A single binary digit (0 or 1) is called a bit. Eight bits make up a byte. Within the machine, the unit of information that is transferred at one time to/from the CPU and main memory is called a word. The size of a word, or the word length, varies from one machine to another. Typically, it’ll be from 4 to 64 bits. A 4-byte word contains 32 bits, etc.

One memory cell or memory location holds one or more words. Let’s say it’s one word, or 4 bytes. Whatever information (number) is stored in one such memory cell must be expressible as a string of 32 bits and no more. For instance, a non-terminating binary fraction will be truncated, e.g., (0.1)10 = (0.00011001100110011. . .)2. Only 32 digits will be stored in memory. When translated back into decimal, the number will be (0.09999997)10, not (0.1)10. Similarly, the finite precision places a limit on the largest and the smallest numerical value that can be stored in a memory cell.

In the back of our minds, we always remain aware of the physical limitations of the machine.

6.
Debugging

When syntax errors are all eliminated, the program may very well run smoothly to completion. Perhaps it produces results which are clearly absurd; perhaps the results appear quite plausible. A programmer must always take steps to convince itself that the program is working correctly; the temptation to assume must be resisted.

One of the most insidious assumptions is that the program is doing what the programmer intended it to do. Perhaps, a typing error has produced a statement that has no syntax error, but does a different operation from that intended. Perhaps the logical sequence of steps written by the programmer doesn’t accomplish the task intended by the programmer. This why program tracing is so important, why it is essential to insert print statements all through the program to display the intermediate values of variables, why it is essential to check and double check such things as argument lists and dimensions and the values of indices—checking not what the programmer intended, but what the program actually does.

The other, almost easier, aspect of debugging involves applying the program to a problem whose solution is already known. It also involves repeating a numerical solution with different values of various parameters such as step size and convergence tolerance. It involves comparing a numerical solution for consistency with previous experience.

II.
MatLab®
A.
Program Features

Work in MatLab® is done in a variety of windows. The windows used most often are the Command, Figure, Editor, and Help windows. When the program is started, three windows are displayed—Command, Current Directory, and Command History windows. The first thing to do upon starting the program is to select the Desktop Menu, select Desktop Layout, select Command Window Only.

1.
Commands

a.
Command lines (p. 9)

Commands are entered at the command prompt (>>). When the enter key is pressed, the command is executed and the output (if any) is displayed at once. All commands are recorded in the Command History. Results from those previous commands are remembered.

More than one command may be entered on one line, separated by commas. The commands are executed in order when enter is pressed.

A command can be continued to the next line with an ellipsis followed by enter.

The command history can be accessed with the up and down arrow keys.

Suppress command output--If a command is ended with a semicolon, display of its output (if any) is suppressed. The product of the command is still available, just not displayed in the command window.

Comments

Comment lines are started with the % symbol. They are not executed when the enter key is pressed. A comment may also be attached to the end of a command, before pressing the enter key.

Clearing the Command Window

The clc command clears the Command Window, but does not erase the command history.

b.
Arithmetic operators (p. 10)

	Operation
	Symbol precedence

	Addition
	+ 4

	Subtraction
	- 4

	Multiplication
	* 3

	Right division
	/ 3

	Left division
	\ 3

	Exponentiation
	^ 2

Notice the distinction between right & left division. Left division is right division raised to the
–1 power: 3\5 = 5/3.

Expressions enclosed in parentheses are evaluated first. Nested parentheses are executed from innermost outward.

c.
Built-in functions (pp. 13-16)

Commonly used math functions are built-in. There are the usual sqrt, exp, sin, cos, etc., as shown in the tables in the text. In addition, there are so-called rounding functions. The argument, x, may be an expression.

	Function
	Description

	Round(x)
	Round to nearest integer

	Fix(x)
	Round toward zero

	Ceil(x)
	Round toward infinity

	Floor(x)
	Round toward –infinity

	Rem(x,y)
	Remainder of x/y

	Sign(x)
	Returns the algebraic sign of x: 1, -1, or 0

d.
Scalars

A scalar is a numerical constant, like 5 or –8746 or 45.998, etc. A scalar variable is a name, really the label of a memory location. A numerical value is stored in a variable. That numerical value may be changed at any time. A variable name must begin with a letter, but may otherwise contain letters, digits and the underscore character. There is a limit to how many characters the name may be, but that varies with the MatLab® version.

Built-in scalar variables: ans, pi, eps = 2^(-52), inf (infinity), and my favorite, NaN (not a number). The variable ans is used to store the value of an expression or command that has not been assigned a variable name. Caution! The built-in scalar variables may be reassigned, whether inadvertently, or advertently.

The values stored in variables are all retained until or unless they are removed from memory with the clear command. A list of variables presently in memory is obtained with the who or whos commands.

e.
Assignment operator

Numerical values are “assigned” to a variable name with the assignment operator. The assignment operator is the = sign, but it does not mean equal to. It means store this value in the memory location labeled by the specified variable name. Only a single variable name can be on the left-hand side, while the right-hand side may be a single number or a computable expression including other, previously defined, variables.

The initial assignment of a value to a variable serves to define that variable. There is no special declaration of variable types as is seen in some programming languages.

f.
Numerical display formats (p. 12-13)

The format command sets the display format of numerical values. See Table 1-2 in the text. Basically, the number of digits displayed can be either 4 or 14(15) in either fixed point or exponential notation.

2.
Arrays

An array is a matrix, or rather a matrix is an array of numbers. An n by m matrix has n rows and m columns. All variables in Matlab® are arrays, even scalars, which are 1x1 arrays.

a.
Vectors

A vector is a one-dimensional array. A row vector has one row and n columns. A row vector is defined by listing its elements enclosed by square brackets and separated by commas or spaces. E.g., a three element row vector is defined by A = [a1 , a2 , a3]. Similarly, a column vector is defined by listing its elements enclosed by square brackets and separated by semicolons. B = [b1 ; b2 ; b3] The column vector has one column and m rows.

Alternatively, row vectors may be defined by first element (zi), last element (zf) and the spacing between the elements (q). Z = [zi : q : zf]

The linspace command creates a row vector by specifying the first and last element and the number of elements. Z = linspace(z1,zf,n)

A character string is stored in MatLab® as a vector, one character to one element. For instance,

B = ‘Now is the time for all’ creates a 23-element vector, as there are 23 characters (including spaces) in the phrase enclosed in the single quote marks. Each element may be addressed and altered/replaced/deleted individually.

b.
Two-dimensional arrays

A = [first row ; second row ; third row ; . . .]

The rows can be specified as individual row vectors. The elements can be expressions.

Special arrays are zeros (elements all zero), ones (elements all ones), and eye (the identity matrix).

The matrix transpose operator is the single quote mark. B = A’ (B is the transpose of A.

c.
Addressing matrix elements

Individual elements of an array are referred to by their indices.

A(k) is the kth element of the vector A. B(m,n) is the element in the mth row & nth column.

It may be desirable to address an entire row or column of a matrix, perhaps a subset of a row or column. In that case a colon (:) is used to indicate a range.

The 3rd through 6th elements of a vector are addressed by A(3:6), etc. Likewise, all the elements of the mth row of a matrix are addressed by B(m,:). The m through n columns of all the rows of a matrix B are designated by B(:,m:n).

The most general case would be a block of elements within the matrix—B(m:n,p:q).

d.
Adding or deleting matrix elements

It is possible alter the sizes of a previously defined array variables. This done simply by addressing additional vector(matrix) elements and assigning them values.

Say that A is a 4-element vector. We add elements to the vector by assigning values to the extra elements. A(5)=5 , A(6)=7 , A97)=-98 , etc. Alternatively, a preexisting vector may be appended to another. C=[A B] or C=[G ; H]. Likewise, rows, columns, or entire matrices may be appended to a matrix. Of course, the dimensions of the added rows, columns, & matrices must match the matrix being enlarged.

A vector or matrix can be reduced in size, as well, by assigning “nothing” to some the elements, thusly: B(:,4,9)=[]. This particular example will eliminate all rows from columns 4 – 9.

e.
Built in array manipulations

Some common array handling functions are built-in. These are listed on pages 41 – 43 of the text.

3.
Array Operations

a.
Matrix operations

Arrays are multiplied, divided, added, subtracted, etc. according to the usual rules of matrix arithmetic.

Inverse A-1 = A^-1

Left & right division X = A-1B = A\B X = DC-1 = D/C

Left and right division arise because matrix multiplication is not commutative.

b.
Element by element operations

There exist also what are called element-by-element operations. In that case, an operation is carried out on every element of an array. A period is added in front of the math operator to indicate element-by-element operation. E.g., .* or .^

Notice that a dot product between two vectors can be carried out by an element-by-element multiplication: sum(A.*B) = a1b1 + a2b2 + a3b3 + . . .

c.
Analyzing arrays

The built-in array functions are listed in Table 3-1, pages 64-65. These include Inv and Det.

B.
Files

1.
m-files

MatLab® commands can be stored in a plain text file, and then “run” in the Command window. The general term for a series of commands is a script. Writing such a series of commands is called scripting. In MatLab®, script files are saved with the extension .m, hence the term m-files.

The m-file may be created & edited in any plain text editor, such as Notepad, or by any word processing program that is capable of storing plain text. There is also an Edit Window in MatLab® itself.

a.
Editor

Script files are created, edited, saved, and run in the Edit window.

b.
I/O (pp 95-117)

Input

Assign variables in the Command window before running the script.

Use the Input command or function within the script to interactively enter data.

Variable = input(‘message string’)

Output

Disp—writes to the workspace

Fprintf—allows formatting of the printed line(s).

2.
Script files

a.
Running

Run by entering the file name at the prompt in the Command window.

Run by pressing the run button in the Editor window

In either case, commands previously issued and variables previously defined in the Command window are known to the script file.

b.
Comments & documentation

There must be comments throughout a script file describing the purpose of the script, defining the variables used, describing the required input, etc. The purpose of the documentation is to make plain what is happening in the script to yourself or another programmer at some later date, not to mention to the instructor. Get in the habit early of over-commenting your scripts.

c.
Inline & feval

These are commands to create one-liners.

Functioname = inline(‘math expression as character string’)

x = functioname(arguments)

variable = feval(‘function name’,argument value)

3.
Function files

function command

A function file differs from the general script file in that it is self-contained. Variables assigned in the work space (Command window) are not available inside the function file in general. Likewise, variables assigned within the function file are not available outside the function file. Variables have to be assigned inside the function file, or passed via the argument list in the function statement, or of course by input commands. The first line of a function file is

function[arguments-out] = functioname(arguments-in)

Typically, the function is saved in the file functioname.m; that is, the file name is the same as the function. The function is invoked by entering the functioname(arguments-in)

Data can be passed to the function through global variables, the argument-in list, and through input commands within the function, as well as xlsread commands.

The function produces output through disp, fprintf, and plot commands within the script, or through the arguments-out list.

It is possible to define variables to be global variables by including the Global command in all script files, and the Command window as well.

Global variable list
C.
Plots

1.
Two Dimensional Graphs (pp. 133-158
a.
Line plots

Executing the plot or the fplot command automatically opens a Figure Window.

Plot(X,Y) – plots Y vs X, where X & Y are vectors of the same length. If no other parameters are specified, the graph is plotted in a bare-bones fashion, with a line connecting the data points, but no axis titles, or data point symbols, etc. The axes are scaled over the intervals spanned by the vectors X & Y.

However, there are parameters within the plot command as well as additional commands whose purpose is to change the format of the graph. A graph can be formatted interactively within the Figure Window, as well.

For plotting a function, there is the command fplot(‘function’,xmin,xmax,ymin,ymax). The function, y = f(x), is entered as a character string, as in ‘45*cos(3*x^3)’. The drawback of fplot is that the f(x) cannot include variable names, only the dummy variable.

b.
Other plots

There are available other plotting commands that produce log graphs, bar graphs, pie charts, etc.

c.
Multiple graphs

It is possible to graph several curves on the same plot, using the Hold On and Hold Off commands. Alternatively, it is possible to create several separate graphs on a single page with the Subplot command.

2.
Three Dimensional Graphs

a.
Line plots (p 323)

Plot3(X,Y,Z)

This one is intended to plot X(t), Y(t), & Z(t) all as functions of a fourth parameter, t.

b.
Surface plots (pp 324-330)

Mesh(X,Y,Z) or Surf(X,Y,Z)

These commands plot Z(X,Y). The mesh command creates a wire-grid surface, while the surf command adds color shading to the surface. There are variations of mesh & surf that produce surface graphs of differing appearance—meshz, meshc, surfc, etc.

c.
Contour plots (p 330)

Contour(X,Y,Z,n) and variations.

d.
Special graphics (p 331)

Bar3(Y)

Sphere or [X,Y,Z]=Sphere(n) – produces a set of (X,Y,Z) to be used by mesh or surf to plot a sphere.

[X,Y,Z]=Cylinder(r) – produces a set of points to be used by mesh or surf to draw a cylinder. r is a vector that specifies the profile of the cylinder. r = some f(t)

e.
view command

The View command alters the angle at which a 3-d plot is viewed, by specifying the azimuth and elevation angles of the view point.

View(az,el), with az and el specified in degrees, relative to the xz-plane and the xy-plane, respectively.

D.
Programs

MatLab® has many built-in functions and computing tools. Nonetheless, it becomes necessary to write a special-purpose solution for a specific problem. No one commercial computing package can address every possible situation, and no one lab can have every commercial product on hand. Previously, we have used assignment statements to carry out calculations, and plot commands to produce graphical output. Computer programs require also statements to make decisions, to make comparisons and to carry out repetitive operations, not to mention input and output.

1.
Branches

a.
Relational & logical operators (p.174)
	Operator
	Description

	<
	Less than

	>
	Greater than

	<=
	Less than or equal to

	>=
	Greater than or equal to

	= =
	Equal to**

	~=
	Not equal to

*The equal to operator consists of two equal signs, with no space between them.

If two numbers are compared, the result is 1 (logical true) or 0 (logical false). Comparing two scalars yields a scalar 1 or 0. Arrays are compared element-by element. The result is a logical array of 1s and 0s. Evidently, the two arrays must be the same size if they are to be compared with each other. Similarly, a scalar is compared with an array element-by element, and the result is logical array of 1s and 0s. The elements of logical arrays can be used to address elements in ordinary arrays. Since the relational comparisons produce numerical values, relational operators can be used within mathematical expressions. In mathematical expressions, the relational operators are evaluated after all mathematical operators.

Logical operators

	Operator
	Description

	&
A&B
	A AND B
=true if both A and B are true, false otherwise

	|
A|B
	A OR B
=true if A or B is true, false if both are false

	~
~A
	NOT A
=true if A is false, false if A is true

See the order of precedence on page 178. Notice that NOT comes after exponentiation and before multiplication, etc., but that the other logical operators (AND, OR) come last.

There are a number of built-in logical functions, described on pages 179 – 180.

b.
If (pp. 182-190)
The IF statement is used to select between two courses of action. Several IF statements may be nested to create a binary decision tree.

The decision is based on the truth or falsity of a statement or conditional expression. A conditional expression is an expression consisting of relational and/or logical operators. The expression will have the value true or false.

i.
if-end (a block of commands is executed if the conditional expression is true, skipped if it’s false.

if conditional expression

Matlab® commands

end

ii.
if-else-end (in this case, there are two blocks of MatLab® commands—one is executed if the conditional expression is true, the other if it is false.

if conditional expression

MatLab® commands

else

Matlab® commands

end

iii.
if-elseif-else-end (using two conditional expressions, one of three sets of Matlab® commands is executed.

if conditional expression

MatLab® commands

elseif conditional expression

MatLab® commands

else

Matlab® commands

end

c.
Case

If we desire to select from among more than 2 or 3 cases, then it may be more convenient to use the switch-case statement.

switch switch expression

case value1

MatLab® commands

case value2

MatLab® commands

case value3

MatLab® commands

etc.

otherwise

MatLab® commands

end

The switch expression is a scalar or string variable or an expression that can take on the values value1, value2, value3, etc. If none of the specified values occur, then the block following the otherwise command is executed. The otherwise command is optional.

2.
Loops (pp. 190-200)
Another thing we want a computer program to do automatically is to repeat an operation.

a.
Counting

The for-end loop executes a block of MatLab® commands a specified number of times.

for k = f:s:t

MatLab® commands

end

The loop executes for k = f, f+s, f+2s, f+3s, . . ., t. The increment, s, may be omitted in which case it is assumed to be 1.

b.
Conditional

Alternatively, a loop may be executed as long as a conditional expression remains true.

while conditional expression

MatLab® commands

end

The variables in the conditional expression must have initial values assigned, and at least one of the variables must be changed within the loop.

3.
Input/output (pp 114-118)

a.
File input

variable = xlsread(‘filename’,’sheetname’,’range’)(import data from an Excel spreadsheet

b.
Import Wizard.

The Import Wizard is invoked by selecting Import Data in the File Menu.

c.
File output

fprintf--writes to a plain text disk file fprint(fid,arguments)

fid=open(‘filename’)

fclose(fid)

xlswrite(‘filename’,’sheetname’,’range’,variablename)--export to an Excel spreadsheet

III.
Numerical Solution of Nonlinear Equations

A.
Non-Linear Equations—one at a time

There are closed form solutions for quadratic and even 3rd degree polynomial equations. Higher degree polynomials can sometimes be factored. However, in general there is no closed form analytical solution to non-linear equations.

[image: image447.png]g\.“‘)/\

1.
The Problem

a.
Roots & zeroes

We seek to find x such that
[image: image33.wmf]0

)

(

=

x

f

 or perhaps such that
[image: image34.wmf])

(

)

(

x

g

x

f

=

. In the latter case, we merely set
[image: image35.wmf]0

)

(

)

(

)

(

=

-

=

x

g

x

f

x

h

. We are looking for a root of the equation
[image: image36.wmf]0

)

(

=

x

f

 or a zero of the function f(x).

b.
Graphical solution

Plot f(x) vs. x—observe where the graph crosses the x-axis or plot f(x) and g(x) vs. x and observe where the two curves intersect. A graph won’t give a precise root, but we can use the graph to choose an initial estimate of the root.

2.
Bisection

[image: image448.png]L)

>

a.
Setup

For brevity, say fo = f(xo) and f1 = f(x1), etc. Say further that
[image: image37.wmf]a

=

x

 is the desired root. The graph shows us that
[image: image38.wmf]0

1

<

×

f

f

o

 because f(x) crosses the x-axis between [xo,x1].

b.
Algorithm

Let us find the midpoint of [xo,x1], and call it b.

i)
[image: image39.wmf]2

1

x

x

b

o

+

=

 and then
[image: image40.wmf])

(

b

f

f

b

=

ii) Does
[image: image41.wmf]0

@

b

f

? If so, quit ‘cause
[image: image42.wmf]b

@

a

.

iii) If not, then

if
[image: image43.wmf]0

>

×

b

o

f

f

, then set
[image: image44.wmf]b

x

o

=

 and
[image: image45.wmf]b

o

f

f

=

or

if
[image: image46.wmf]0

<

×

o

b

f

f

, then set instead
[image: image47.wmf]b

x

=

1

 and
[image: image48.wmf]b

f

f

=

1

.

iv) Is
[image: image49.wmf]e

£

-

o

x

x

1

? If so, quit and set
[image: image50.wmf]2

1

x

x

o

+

=

a

.

v) If not, then repeat beginning with step (i).

It is well also to count the iterations and to place a limit on the number of iterations that will be performed. Otherwise, the program could be trapped in an infinite loop. Also, it is well to test for the cases
[image: image51.wmf]0

>

×

b

o

f

f

 and
[image: image52.wmf]0

1

>

×

b

f

f

. It may be that the function does not cross the x-axis between fo and f1, or crosses more than once.

3.
Newton’s Method or the Newton-Raphson Method

a.
Taylor’s series

Any well-behaved function can be expanded in a Taylor’s series:

[image: image53.wmf]L

+

¢

¢

¢

-

+

¢

¢

-

+

¢

-

+

=

!

3

)

(

)

(

!

2

)

(

)

(

)

(

)

(

)

(

)

(

3

2

o

o

o

o

o

o

o

x

f

x

x

x

f

x

x

x

f

x

x

x

f

x

f

.

Let’s say that x is “close” to xo and keep just the first two terms.

[image: image54.wmf])

(

)

(

)

(

)

(

o

o

o

x

f

x

x

x

f

x

f

¢

-

+

»

We want to solve for x such that f(x) = 0.

[image: image55.wmf]0

)

(

)

(

)

(

=

¢

-

+

o

o

o

x

f

x

x

x

f

[image: image56.wmf])

(

)

(

o

o

o

x

f

x

f

x

x

¢

-

=

In effect we have approximated f(x) by a straight line; x is the intercept of that line with the x-axis. It may or may not be a good approximation for the root
[image: image57.wmf]a

.

[image: image449.png]A

b.
Algorithm

i) choose an initial estimate, xi

ii) compute f(xi) and
[image: image58.wmf])

(

i

x

f

¢

iii) compute the new estimate:

[image: image59.wmf])

(

)

(

1

i

i

i

i

x

f

x

f

x

x

¢

-

=

+

iv) return to step (ii) with i = i + 1

c.
Comments

It turns out that if the initial estimate of the root is a good one, then the method is guaranteed to converge, and rapidly. Even if the estimate is not so good, the method will converge to a root—maybe not the one we anticipated.

Also, if there is a
[image: image60.wmf]0

=

¢

f

 point nearby the method can have trouble. It’s always a good thing to graph f(x) first.

4.
Secant Method

a.
Finite differences

A finite difference is merely the difference between two numerical values.

[image: image61.wmf]1

2

x

x

x

-

=

D

 or
[image: image62.wmf]i

i

x

x

x

-

=

D

+

1

Derivatives are approximated by divided differences.

[image: image63.wmf]x

f

x

x

x

f

x

f

x

f

i

i

i

i

D

D

=

-

-

@

¢

+

+

1

1

)

(

)

(

)

(

We may regard this divided difference as an estimate of
[image: image64.wmf]f

¢

 at xi or at xi+1 or at the midpoint between xi and xi+1.

b.
The Secant method

We simply replace
[image: image65.wmf]f

¢

 by the divided difference in the Newton-Raphson formula:

[image: image66.wmf])

(

)

(

)

(

1

1

1

-

-

+

-

-

-

=

i

i

i

i

i

i

i

x

f

x

f

x

x

x

f

x

x

.

Notice the indices: i + 1, i, i – 1. With the Secant Method, we don’t use a functional form for
[image: image67.wmf]f

¢

. We do have to carry along two values of f, however.

Care must be taken that
[image: image68.wmf])

(

)

(

1

-

-

i

i

x

f

x

f

 not be too small, which would cause an overflow error by the computer. This may occur if
[image: image69.wmf])

(

)

(

1

-

»

i

i

x

f

x

f

 due to the finite precision of the machine. This may also give a misleading result for the convergence test of
[image: image70.wmf])

(

)

(

1

-

-

i

i

x

f

x

f

. To avoid that, we might use the relative deviation to test for convergence.

[image: image71.wmf]e

£

-

-

)

(

)

(

)

(

1

i

i

i

x

f

x

f

x

f

c.
Compare and contrast

Both the Newton-Raphson and Secant Methods locate just one root at a time.

Newton: requires evaluation of f and of
[image: image72.wmf]f

¢

 at each step; converges rapidly.

Secant: requires evaluation only of f at each step; converges less rapidly.

5.
Hybrid Methods

A hybrid method combines the use in one program of two or more specific methods. For instance, we might use bisection to locate a root roughly, then use the Secant Method to compute the root more precisely. For instance, we might use bisection to locate multiple roots of an equation, then use Newton-Raphson to refine each one.

B.
Systems of Nonlinear Equations

Consider a system of n nonlinear equations with n unknowns.

[image: image73.wmf]0

)

,

,

,

,

(

3

2

1

1

=

n

x

x

x

x

f

K

[image: image74.wmf]0

)

,

,

,

,

(

3

2

1

2

=

n

x

x

x

x

f

K

[image: image75.wmf]M

[image: image76.wmf]0

)

,

,

,

,

(

3

2

1

=

n

n

x

x

x

x

f

K

1.
Newton-Raphson

a.
Matrix notation

Let’s write the system of equations as a matrix equation.

[image: image77.wmf]0

2

1

=

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

n

f

f

f

f

M

r

The unknowns form a column matrix also.
[image: image78.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

n

x

x

x

x

M

r

2

1

. We might write the system of equations compactly as
[image: image79.wmf]0

=

)

x

(

f

r

r

.

b.
The Method

The Newton-Raphson method for simultaneous equations involves evaluating the derivative matrix,
[image: image80.wmf]F

r

, whose elements are defined to be
[image: image81.wmf]j

i

ij

x

f

F

¶

¶

=

. If the inverse
[image: image82.wmf]1

-

F

r

 exists, then we can generate a sequence of approximations for the roots of functions {fi}.

[image: image83.wmf])

x

(

f

)

x

(

F

x

x

k

k

k

k

r

r

r

r

r

×

-

=

-

+

1

1

At each step, all the partial derivatives must be evaluated and the
[image: image84.wmf]F

r

 matrix inverted. The iteration continues until all the
[image: image85.wmf]0

@

i

f

. If the inverse matrix does not exist, then the method fails. If the number of equations, n, is more than a handful, the method becomes very cumbersome and time consuming.

2.
Implicit Iterative Methods

The Newton-Raphson method is an iterative method in the sense that it generates a sequence of successive approximations by repeating, or iterating, the same formula. However, the term iterative method as commonly used refers to a particular class of algorithms which might more descriptively be called implicit iterative methods. Such algorithms occur in many numerical contexts as we’ll see in subsequent sections of this course. At this point, we apply the approach to the system of simultaneous nonlinear equations.

a.
General form

Let
[image: image86.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

n

a

a

a

a

M

r

2

1

 be the solution matrix to the equation
[image: image87.wmf]0

=

)

x

(

f

r

r

. I.e.,
[image: image88.wmf]0

=

)

(

f

a

r

r

. Now, solve algebraically each
[image: image89.wmf]0

=

)

x

(

f

i

r

 for xi. This creates a new set of equations,
[image: image90.wmf])

x

(

F

x

i

i

¢

=

r

, where
[image: image91.wmf]x

¢

r

 refers to the set of unknowns {xj} excluding xi. Algebraically, this looks funny, because each unknown is expressed in terms of all the other unknowns, hence the term implicit. Of course, what we really mean is

[image: image92.wmf])

x

(

F

x

k

k

r

r

r

=

+

1

.

Alternatively, in terms of matrix elements, the equations take the form

[image: image93.wmf])

,

,

(

,

,

2

,

1

1

,

k

n

k

k

i

k

i

x

x

x

F

x

K

=

+

.

b.
Algorithm

In a program, the iterative method is implemented thusly:

i) choose an initial guess,
[image: image94.wmf]o

x

r

ii) compute
[image: image95.wmf])

x

(

F

x

o

r

r

r

=

1

iii) test
[image: image96.wmf]0

1

@

)

x

(

f

r

r

iv) if yes, set
[image: image97.wmf]1

x

r

r

=

a

 and exit

v) if no, compute
[image: image98.wmf])

x

(

F

x

1

2

r

r

r

=

, etc.

c.
Convergence

We hope that
[image: image99.wmf]a

r

r

=

¥

®

k

k

x

lim

. For what conditions will this be true? Consider a region R in the space of {xi} such that
[image: image100.wmf]h

x

j

j

£

-

a

 for
[image: image101.wmf]n

j

£

£

1

 and suppose that for
[image: image102.wmf]x

 in R there is a positive number
[image: image103.wmf]m

 such that
[image: image104.wmf]m

£

¶

¶

å

=

n

j

j

i

x

)

x

(

F

1

r

. Then, it “can be shown” that if
[image: image105.wmf]o

x

r

 lies in R, the iterative method will converge. What does this mean, practically? It means that if the initial guess,
[image: image106.wmf]o

x

r

, is “close enough” to
[image: image107.wmf]a

r

, then the method will converge to
[image: image108.wmf]a

r

 after some number, k, of iterations. Big deal.

IV.
Linear Algebra

A.
Matrix Arithmetic

The use of matrix notation to represent a system of simultaneous equations was introduced in section III-B-1 above, mainly for the sake of brevity. In solving simultaneous linear equations, matrix operations are central. There follows, therefore, a brief review of the salient properties of matrices. Fuller discussion of the properties of matrices may be found in various texts, particularly Linear Algebra texts.

1.
Matrices

A matrix is an n x m array of numbers. In these notes a matrix is symbolized by a letter with a line on top,
[image: image109.wmf]B

; n is the number of rows and m is the number of columns. If n = m, the matrix is said to be a square matrix. If the matrix has only one column(row) it is said to be a column(row) matrix. The jth element in the ith row of a matrix is indicated by subscripts, bij. Mathematically, an entity like a matrix is defined by a list of properties and operations, for instance the rules for adding or multiplying two matrices. Also, matrices can be regarded as one way to represent members of a group in Group Theory.

[image: image110.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

34

24

14

33

23

13

32

22

12

31

21

11

b

b

b

b

b

b

b

b

b

b

b

b

B

r

[image: image111.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

3

2

1

x

x

x

x

r

2.
Addition & Subtraction

a.
Definition

The addition is carried out by adding the respective matrix elements.

[image: image112.wmf]B

A

C

r

r

r

+

=

[image: image113.wmf]ij

ij

ij

b

a

c

+

=

b.
Rules

The sum of two matrices is also a matrix. Only matrices having the same number of rows and the same number of columns may be added. Matrix addition is commutative and associative.

[image: image114.wmf]A

B

B

A

r

r

r

r

+

=

+

[image: image115.wmf])

C

B

(

A

C

)

B

A

(

r

r

r

r

r

r

+

+

=

+

+

3.
Multiplication

a.
Definition

[image: image116.wmf]B

A

C

r

r

r

=

[image: image117.wmf]L

+

+

+

=

=

å

j

i

j

i

j

i

k

kj

ik

ij

b

a

b

a

b

a

b

a

c

3

3

2

2

1

1

b.
Rules

The product of two matrices is also a matrix. The number of elements in a row of
[image: image118.wmf]A

r

 must equal the number of elements in a column of
[image: image119.wmf]B

r

. Matrix multiplication is not commutative.

[image: image120.wmf]A

B

B

A

r

r

r

r

¹

A matrix may be multiplied by a constant, thusly:
[image: image121.wmf]ij

ij

a

q

c

×

=

. The result is also a matrix.

4.
Inverse Matrix

a.
Unit matrix

The unit matrix is a square matrix with the diagonal elements equal to one and the off-diagonal elements all equal to zero. Here’s a 3x3 unit matrix:

[image: image122.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

0

0

0

1

0

0

0

1

U

r

b.
Inverse

The inverse of a matrix,
[image: image123.wmf]B

r

, (denoted
[image: image124.wmf]1

-

B

r

) is a matrix such that
[image: image125.wmf]U

B

B

B

B

r

r

r

r

r

=

=

-

-

1

1

. The inverse of a particular matrix may not exist, in which case the matrix is said to be singular.

The solution of a system of simultaneous equations in effect is a problem of evaluating the inverse of a square matrix.

B.
Simultaneous Linear Equations

1.
The Problem

a.
Simultaneous equations

We wish to solve a system of n linear equations in n unknowns.

[image: image126.wmf]1

1

2

12

1

11

c

x

b

x

b

x

b

n

n

=

+

+

L

[image: image127.wmf]2

2

2

22

1

21

c

x

b

x

b

x

b

n

n

=

+

+

L

[image: image128.wmf]M

[image: image129.wmf]n

n

nn

n

n

c

x

b

x

b

x

b

=

+

+

L

2

2

1

1

where the {bij} and the {ci} are constants.

b.
Matrix notation

The system of equations can be written as a matrix multiplication.

[image: image130.wmf]c

x

B

r

r

r

=

, where
[image: image131.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

n

x

x

x

x

M

r

2

1

,
[image: image132.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

n

c

c

c

c

M

r

2

1

 and
[image: image133.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

nn

n

n

n

n

b

b

b

b

b

b

b

b

b

B

L

M

O

M

M

L

L

r

2

1

2

22

21

1

12

11

.

When n is small (
[image: image134.wmf]40

£

n

, say) a direct or one-step method is used. For larger systems, iterative methods are preferred.

2.
Gaussian Elimination

In a one-step approach, we seek to evaluate the inverse of the
[image: image135.wmf]B

r

 matrix.

[image: image136.wmf]c

x

B

r

r

r

=

[image: image137.wmf]c

B

x

x

B

B

r

r

r

r

r

r

1

1

-

-

=

=

The solution is obtained by carrying out the matrix multiplication
[image: image138.wmf]c

B

r

r

1

-

.

a.
Elimination

You may have seen this in high school algebra. For brevity’s sake, let’s let n = 3.

[image: image139.wmf]1

3

13

2

12

1

11

c

x

b

x

b

x

b

=

+

+

[image: image140.wmf]2

3

23

2

22

1

21

c

x

b

x

b

x

b

=

+

+

[image: image141.wmf]3

3

33

2

32

1

31

c

x

b

x

b

x

b

=

+

+

In essence, we wish to eliminate unknowns from the equations by a sequence of algebraic steps.

normalization
i) multiply eqn. 1 by
[image: image142.wmf]11

21

b

b

-

 and add to eqn. 2; replace eqn. 2.

reduction

ii) multiply eqn 1 by
[image: image143.wmf]11

31

b

b

-

 and add to eqn. 3; replace eqn. 3.

[image: image144.wmf]1

3

13

2

12

1

11

c

x

b

x

b

x

b

=

+

+

[image: image145.wmf]2

3

23

2

22

c

x

b

x

b

¢

=

¢

+

¢

[image: image146.wmf]3

3

33

2

32

c

x

b

x

b

¢

=

¢

+

¢

iii) multiply eqn. 2 by
[image: image147.wmf]22

32

b

b

¢

¢

-

 and add to eqn. 3; replace eqn. 3.

[image: image148.wmf]1

3

13

2

12

1

11

c

x

b

x

b

x

b

=

+

+

[image: image149.wmf]2

3

23

2

22

c

x

b

x

b

¢

=

¢

+

¢

[image: image150.wmf]3

3

33

c

x

b

¢

¢

=

¢

¢

We have eliminated x1 and x2 from eqn.3 and x1 from eqn. 2.

back substitution
iv) solve eqn. 3 for x3, substitute in eqn. 2 & 1.

 solve eqn. 2 for x2, substitute in eqn. 1.

 solve eqn. 1 for x1.

b.
Pivoting

Due to the finite number of digits carried along by the machine, we have to worry about the relative magnitudes of the matrix elements, especially the diagonal elements. In other words, the inverse matrix,
[image: image151.wmf]1

-

B

r

 may be effectively singular even if not actually so. To minimize this possibility, we commonly rearrange the set of equations to place the largest coefficients on the diagonal, to the extent possible. This process is called pivoting.

e.g.

37x2 – 3x3 = 4

19x1 – 2x2 + 48x3 = 99

7x1 + 0.6x2 +15x3 = -9

rearrange

19x1 – 2x2 + 48x3 = 99

37x2 – 3x3 = 4

7x1 + 0.6x2 +15x3 = -9

or

7x1 + 0.6x2 +15x3 = -9

37x2 – 3x3 = 4

19x1 – 2x2 + 48x3 = 99

3.
Matrix Operations

In preparation for writing a computer program, we’ll cast the elimination and back substitution in the form of matrix multiplications.

a.
Augmented matrix

[image: image152.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

=

3

33

32

31

2

23

22

21

1

13

12

11

c

b

b

b

c

b

b

b

c

b

b

b

c

:

B

A

r

r

r

b.
Elementary matrices

Each single step is represented by a single matrix multiplication.

The elimination steps:

[image: image153.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

=

1

0

0

0

1

0

0

1

11

21

1

b

b

S

r

[image: image154.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

-

=

1

0

0

1

0

0

0

1

11

31

2

b

b

S

r

[image: image155.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

¢

¢

-

=

1

0

0

1

0

0

0

1

22

32

3

b

b

S

r

[image: image156.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

¢

¢

¢

¢

¢

¢

¢

=

3

33

2

23

22

1

13

12

11

1

2

3

0

0

0

c

b

c

b

b

c

b

b

b

A

S

S

S

r

r

r

r

The first back substitution step:

[image: image157.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

¢

¢

=

33

1

1

0

0

0

1

0

0

0

1

b

Q

r

[image: image158.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

¢

¢

¢

=

3

2

23

22

1

13

12

11

1

2

3

1

1

0

0

0

x

c

b

b

c

b

b

b

A

S

S

S

Q

r

r

r

r

r

This completes one cycle. Next we eliminate one unknown from the second row using

[image: image159.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

¢

-

=

1

0

0

1

0

0

0

1

23

4

b

S

r

[image: image160.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

¢

¢

¢

¢

=

3

2

22

1

13

12

11

1

2

3

1

4

1

0

0

0

0

x

c

b

c

b

b

b

A

S

S

S

Q

S

r

r

r

r

r

r

[image: image161.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

¢

¢

=

1

0

0

0

1

0

0

0

1

22

2

b

Q

r

[image: image162.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

3

2

1

13

12

11

1

2

3

1

4

2

1

0

0

0

1

0

x

x

c

b

b

b

A

S

S

S

Q

S

Q

r

r

r

r

r

r

r

This completes the second cycle. The final cycle is

[image: image163.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

1

0

0

0

1

0

0

1

13

5

b

S

r

[image: image164.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

1

0

0

0

1

0

0

1

12

6

b

S

r

[image: image165.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

1

0

0

0

1

0

0

0

1

11

3

b

Q

r

[image: image166.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

3

2

1

1

2

3

1

4

2

5

6

3

1

0

0

0

1

0

0

0

1

x

x

x

S

S

S

Q

S

Q

S

S

Q

r

r

r

r

r

r

r

r

r

We identify the inverse matrix
[image: image167.wmf]1

2

3

1

4

2

5

6

3

1

S

S

S

Q

S

Q

S

S

Q

B

r

r

r

r

r

r

r

r

r

r

=

-

. Notice that the order of the matrix multiplications is significant. Naturally, we want to automate this process, and generalize to n equations.

4.
Gauss-Jordan Elimination

a.
Inverse matrix

We might multiply all the elementary matrices together before multiplying by the augmented matrix. That is, carry out the evaluation of
[image: image168.wmf]1

-

B

r

, then perform
[image: image169.wmf]A

B

r

r

1

-

.

[image: image450.png]

b.
Algorithm

[image: image170.wmf]ï

þ

ï

ý

ü

¹

×

-

=

=

=

-

-

-

-

k

i

a

a

a

a

k

i

a

a

a

k

kj

k

ik

k

ij

k

ij

k

kk

k

kj

k

kj

1

1

1

1

[image: image171.wmf]1

,

,

1

,

1

+

=

=

=

n

k

j

n

i

n

k

n = number of equations

k = index of the step or cycle

aij = elements of the original augmented matrix,
[image: image172.wmf]A

r

.

For each value of k, do the i = k line first.

c.
Example

n = 3 and n + 1 = 4

[image: image173.wmf]16

2

4

3

2

1

=

+

+

x

x

x

[image: image174.wmf]10

3

3

2

1

=

+

+

x

x

x

[image: image175.wmf]12

5

2

3

2

1

=

+

+

x

x

x

k = 0
[image: image176.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

12

5

2

1

10

1

3

1

16

2

1

4

A

r

e.g., for k = 1, i = 1, j = 1 & j = 4

[image: image177.wmf]1

0

11

0

11

1

11

=

=

a

a

a

[image: image178.wmf]4

4

16

0

11

0

14

1

14

=

=

=

a

a

a

[image: image179.wmf]0

1

1

1

1

11

0

21

0

21

1

21

=

×

-

=

-

=

a

a

a

a

k = 1
[image: image180.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

¢

8

2

9

4

7

0

6

2

1

4

11

0

4

2

1

4

1

1

A

r

k = 2
[image: image181.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

¢

¢

11

46

11

46

0

0

11

24

11

2

1

0

11

38

11

5

0

1

A

r

k = 3
[image: image182.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

¢

¢

¢

1

1

0

0

2

0

1

0

3

0

0

1

A

r

[image: image183.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

2

3

x

C.
Iterative Methods

For n > about 40, the one-step methods take too long and accumulate too much round-off error.

1.
Jacobi Method

a.
Recursion formula

Each equation is solved for one of the unknowns.

[image: image184.wmf](

)

11

1

3

12

2

12

1

1

1

b

x

b

x

b

x

b

c

x

n

n

-

-

-

-

=

L

[image: image185.wmf](

)

22

2

3

23

1

21

2

2

1

b

x

b

x

b

x

b

c

x

n

n

-

-

-

-

=

L

[image: image186.wmf]M

[image: image187.wmf](

)

nn

n

nn

n

n

n

n

b

x

b

x

b

x

b

c

x

1

1

1

2

2

1

1

-

-

-

-

-

-

=

L

In short
[image: image188.wmf]ii

n

j

i

j

j

ij

i

i

b

x

b

c

x

1

1

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

=

å

¹

=

, i = 1, 2, 3, . . .,n.

Of course, we cannot have bii = 0 for any i. So before starting the iterative program, we may have to reorder the equations. Further, it can be shown that if
[image: image189.wmf]ij

ii

b

b

³

 for each i, then the method will converge, though it may be slowly. Here’s an outline of the “showing.”

The first iteration is:

[image: image190.wmf]V

x

A

x

r

r

r

r

+

-

=

0

1

After several iterations,
[image: image191.wmf]V

A

x

A

V

A

A

A

x

A

A

A

A

V

x

A

x

k

k

k

k

k

k

k

r

r

r

r

r

r

r

L

r

r

r

r

L

r

r

r

r

r

+

=

+

-

=

+

-

=

+

+

+

+

0

1

2

3

1

0

1

2

3

1

1

We want
[image: image192.wmf]0

0

1

=

+

¥

®

x

A

lim

k

k

r

r

, which will happen if
[image: image193.wmf]1

£

ii

ij

b

b

.

b.
Algorithm

We need four arrays:
[image: image194.wmf]k

x

r

,
[image: image195.wmf]1

+

k

x

r

,
[image: image196.wmf]B

r

, and
[image: image197.wmf]c

r

.

Firstly, select an initial guess (k = 0)
[image: image198.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

0

0

2

0

1

0

n

x

x

x

x

M

r

.

Secondly, compute a new
[image: image199.wmf]x

r

 (k + 1 = 1).

[image: image200.wmf]ii

n

j

i

j

k

j

ij

i

k

i

b

x

b

c

x

1

1

1

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

=

å

¹

=

+

Thirdly, test for convergence.
[image: image201.wmf]e

£

-

+

k

i

k

i

k

i

x

x

x

1

. Notice that all the xi must pass the test.

If all the xi do not pass the test, then repeat until they do.

2.
Gauss-Seidel Method

The Gauss-Seidel Method hopes to speed up the convergence by using newly computed values of xi at once, as soon as each is available. Thus, in computing xnew(12), for instance, the values of xnew(1), xnew(2), . . ., xnew(11) are used on the right hand side of the formula. We still need to keep separate sets of xnew and xold in order to perform the convergence tests.

[image: image451.png]{ 3

A i

2 J
- ,/L >
4 L4
d l <

D.
Applications

A couple of cases in engineering that give rise to simultaneous linear equations.

1.
Electrical Circuit

[image: image202.png]200V T

(7+2+6)x1 – 2x2 – 6x3 = 300

-2x1 + (2+5+4+1)x2 – 4x3 – x4 = 0

-6x1 – 4x2 + (4+9+6)x3 – 9x4 = 0

-x2 – 9x3 + (9+1+11)x4 = 0

[image: image203.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

-

-

-

=

0

21

9

1

0

0

9

19

4

6

0

1

4

12

2

300

0

6

2

15

A

r

; solution:
[image: image204.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

13

6

3

13

35

9

5

26

.

.

.

.

x

r

2.
Truss System

[image: image205.png]

[image: image206.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

-

=

0

1

0

0

0

0

0

0

1

600

0

1

0

0

0

0

0

0

0

0

0

1

5

4

0

0

0

0

600

0

0

0

5

3

1

0

0

0

0

0

0

0

0

5

4

0

1

0

400

0

0

0

0

0

1

1

0

3600

0

0

0

0

0

6

0

0

600

0

0

0

0

0

0

0

1

A

r

; solution:
[image: image207.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

=

600

600

67

866

33

1083

1250

600

1000

600

.

.

x

r

V.
Interpolation and Curve Fitting

Suppose one has a set of data pairs:

	x
	f

	x1
	f1

	x2
	f2

	x3
	f3

	
[image: image208.wmf]M

	
[image: image209.wmf]M

	xm
	fm

where fi is the measured (or known) value of f(x) at xi. We would like to find a function that will approximate f(x) for all x in a specified range. There are two basic approaches: interpolation and curve fitting.

A.
Polynomial Interpolation

With interpolation, the approximating function passes through the data points. Commonly, the unknown f(x) is approximated by a polynomial of degree n, pn(x), which is required to pass through all the data points, or a subset thereof.

1.
Uniqueness

Theorem: Given {xi} and {fi}, i = 1, 2, 3, . . ., n + 1, there exists one and only one polynomial of degree n or less which reproduces f(x) exactly at the {xi}.

Notes

i) There are many polynomials of degree > n which also reproduce the {fi}.

ii) There is no guarantee that the polynomial pn(x) will accurately reproduce f(x) for

[image: image210.wmf]i

x

x

¹

. It will do so if f(x) is a polynomial of degree n or less.

Proof: We require that pn(x) = fi for all i = 1, 2, 3, . . ., n+1. This leads to a set of simultaneous linear equations

[image: image211.wmf]1

1

2

1

2

1

1

f

x

a

x

a

x

a

a

n

n

o

=

+

+

+

+

L

[image: image212.wmf]2

2

2

2

2

2

1

f

x

a

x

a

x

a

a

n

n

o

=

+

+

+

+

L

[image: image213.wmf]M

[image: image214.wmf]1

1

2

1

2

1

1

+

+

+

+

=

+

+

+

+

n

n

n

n

n

n

o

f

x

a

x

a

x

a

a

L

which we’d solve for the {ai}. As long as no two of the {xi} are the same, the solution to such a set of simultaneous linear equations is unique.

The significance of uniqueness is that no matter how an interpolating polynomial is derived, as long as it passes through all the data points, it is the interpolating polynomial. There are many methods of deriving an interpolating polynomial. Here, we’ll consider just one.

2.
Newton’s Divided Difference Interpolating Polynomial

a.
Divided differences

The first divided difference is defined to be (notice the use of square brackets)

[image: image452.wmf]Least Squares Fit

-2

-1

0

1

2

0

1

2

3

4

x

f(x)

data

fit

[image: image215.wmf][

]

b

a

b

f

a

f

b

a

f

-

-

=

)

(

)

(

,

,
[image: image216.wmf]b

a

¹

If f(x) is differentiable in the interval [a,b], then there exists at least one point between a and b at which
[image: image217.wmf][

]

b

a

f

dx

df

,

)

(

=

x

. In practice, we would take a as close to b as we can (limited by the finite precision of the machine) and say that
[image: image218.wmf](

)

[

]

b

a

f

f

,

»

¢

x

.

Higher order differences are defined as well:

	order
	notation
	definition

	0
	
[image: image219.wmf][

]

1

x

f

	
[image: image220.wmf])

(

1

x

f

	1
	
[image: image221.wmf][

]

1

2

,

x

x

f

	
[image: image222.wmf][

]

[

]

1

2

1

2

x

x

x

f

x

f

-

-

	2
	
[image: image223.wmf][

]

1

2

3

,

,

x

x

x

f

	
[image: image224.wmf][

]

[

]

1

3

1

2

2

3

,

,

x

x

x

x

f

x

x

f

-

-

	3
	
[image: image225.wmf][

]

1

2

3

4

,

,

,

x

x

x

x

f

	
[image: image226.wmf][

]

[

]

1

4

1

2

3

2

3

4

,

,

,

,

x

x

x

x

x

f

x

x

x

f

-

-

	
[image: image227.wmf]M

	
[image: image228.wmf]M

	
[image: image229.wmf]M

	n
	
[image: image230.wmf][

]

1

2

1

,

,

,

,

x

x

x

x

f

n

n

L

+

	
[image: image231.wmf][

]

[

]

1

1

1

2

1

2

3

1

,

,

,

,

,

,

,

,

x

x

x

x

x

x

f

x

x

x

x

f

n

n

n

n

n

-

-

+

-

+

L

L

b.
Newton’s divided difference formula

Build the formula up step by step:

i)
two data points (x1,f1) & (x2,f2). We wish to approximate f(x) for x1 < x < x2.

As a first order approximation, we use a straight line (p1(x) so that

[image: image232.wmf][

]

[

]

x

x

f

x

x

f

,

,

2

1

@

[image: image233.wmf]x

x

x

f

f

x

x

f

x

f

-

-

@

-

-

2

2

1

1

)

(

)

(

Solve for f(x)

[image: image234.wmf][

]

)

(

,

)

(

)

(

1

1

2

1

1

x

p

x

x

f

x

x

f

x

f

=

-

+

@

ii)
Now, if f(x) is a straight line, then f(x) = p1(x). If not, there is a remainder, R1.

[image: image235.wmf][

]

[

]

1

2

2

1

1

2

1

1

1

1

,

,

)

)(

(

,

)

(

)

(

)

(

)

(

)

(

x

x

x

f

x

x

x

x

x

x

f

x

x

f

x

f

x

p

x

f

x

R

-

-

=

-

-

-

=

-

=

We don’t know f(x), so we cannot evaluate f[x,x2,x1]. However, if we had a third data point
we could approximate
[image: image236.wmf][

]

[

]

1

2

3

1

2

,

,

,

,

x

x

x

f

x

x

x

f

@

. Then we have a quadratic

[image: image237.wmf][

]

[

]

)

(

,

,

)

)(

(

,

)

(

)

(

2

1

2

3

2

1

1

2

1

1

x

p

x

x

x

f

x

x

x

x

x

x

f

x

x

f

x

f

=

-

-

+

-

+

@

.

iii)
If f(x) is not a quadratic polynomial, then there is still a remainder, R2.

[image: image238.wmf])

(

)

(

)

(

2

2

x

p

x

f

x

R

-

=

To estimate R2, we need a fourth data point and the next order divided difference. . .

[image: image239.wmf][

]

[

]

1

2

3

4

1

2

3

,

,

,

,

,

,

x

x

x

x

f

x

x

x

x

f

@

iv)
Jump to the generalization for n + 1 data points:

[image: image240.wmf])

(

)

(

)

(

x

R

x

p

x

f

n

n

+

=

, where

[image: image241.wmf][

]

[

]

[

]

+

-

-

+

-

+

=

1

2

3

2

1

1

2

1

1

,

,

)

)(

(

,

)

(

)

(

x

x

x

f

x

x

x

x

x

x

f

x

x

x

f

x

p

n

[image: image242.wmf][

]

1

2

1

3

2

1

,

,

,

,

)

(

)

)(

)(

(

x

x

x

x

f

x

x

x

x

x

x

x

x

n

n

n

L

L

L

+

-

-

-

-

+

Notice that i)
[image: image243.wmf][

]

1

2

3

4

3

2

1

2

3

,

,

,

)

)(

)(

(

x

x

x

x

f

x

x

x

x

x

x

p

p

-

-

-

+

=

, etc. and ii) the (x – xi) factors are also those of the previous term times one more factor.

c.
Inverse interpolation

The NDDIP lends itself to inverse interpolation. That is, given f(x), approximate x. In effect, we are solving f(x) = 0 when f(x) is in the form of a table of data. Simply reverse the roles of the {fi} and the {xi}.

[image: image244.wmf][

]

(

)

[

]

å

Õ

+

=

-

=

+

-

=

=

1

2

1

1

1

2

1

)

(

,

,

,

)

(

n

i

i

j

j

i

n

f

f

f

x

f

f

f

f

f

f

p

x

L

Set f(x) = 0 and evaluate x = pn(0). In practice, with a Fortran program, one would just reverse the data columns and use the same code.

d.
Example

The difference table is computed thusly:

for j=1:n+1

diff(j,1)=f(j)

end

for j=2:n+1

for i=1:n+1-j+1

diff(i,j)=(diff(i+1,j-1)-diff(i,j-1))/(x(i+j-1)-x(i))

end

end

Divided Difference Table for n = 6

	j
	x
	f
	f[,]
	f[, ,]
	f[, , ,]
	f[, , , ,]
	f[, , , , ,]
	f[, , , , , ,]

	1
	1
	-1.5
	0.5
	1.667
	-2.583
	1.583
	-0.727
	0.27

	2
	2
	-1
	3
	-3.5
	2.167
	-0.96
	0.353
	

	3
	2.5
	0.5
	-0.5
	0.833
	-0.233
	0.1
	
	

	4
	3
	0.25
	0.75
	0.367
	0.017
	
	
	

	5
	4
	1
	1.3
	0.4
	
	
	
	

	6
	4.5
	1.65
	1.7
	
	
	
	
	

	7
	5
	2.5
	
	
	
	
	
	

The sixth degree polynomial constructed from this table is

[image: image245.wmf][

]

[

]

Õ

å

-

=

=

-

+

=

1

1

7

2

2

1

1

6

)

(

,

,

,

)

(

i

j

j

i

i

x

x

x

x

x

f

x

f

x

p

L

.

Line by line, the script might look like this:

fac = ex – x(1)

p0 = diff(1,1)

p1 = p0 + fac*diff(1,2)

fac = fac*(ex-x(2))

p2 = p1 + fac*diff(1,3)

fac = fac*(ex-x(3))

p3 = p2 + fac*diff(1,4)

fac = fac*(ex-x(4))

p4 = p3 + fac*diff(1,5))

fac = fac*(ex-x(5))

p5 = p4 + fac*diff(1,6)

fac = fac*(ex-x(6))

p6 = p5 + fac*diff(1,7)

Notice that we must use a different variable name for the argument x from the name used for the data array x(i).

Of course, it’s more general and flexible to use a loop.

fac = 1.0

p = diff(1,1)

for j=1:n

fac = fac*(ex-x(j))

p = p + fac*diff(1,j+1)

end
e.
Issues with high degree polynomials

If we have a large number of data points, 20 or 100 or 1000s, it does not pay to use the entire data table to create a 20 or 100 or 1000th degree polynomial. The greater the degree, the more often the pn goes up and down between the data points. Our confidence that
[image: image246.wmf])

(

)

(

x

p

x

f

n

@

 actually decreases. It’s better to interpolate on subsets of the data using a p3 or a p4 using data points that surround the specified x. This process can be incorporated into the program. These low-degree segments are sometimes called splines.

B.
Least Squares Fitting

Often, there are errors or uncertainties in the data values,
[image: image247.wmf]sec

005

.

0

07

.

10

±

, for instance. Perhaps forcing the approximating function to pass through the data points is not the wisest approach.

An alternative approach is to assume a functional form for the unknown f(x) and adjust it to “best fit” the uncertain data. A way to judge what is “best” is needed.

1.
Goodness of Fit

The method of least squares uses a particular measure of goodness of fit.

a.
Total squared error, E
First of all, never forget that the word error in this context means uncertainty. Now, let’s say {xi,fi} are the n+1 data values and f(x) is the assumed function. Then E is defined to be

[image: image248.wmf](

)

(

)

å

+

=

-

=

1

1

2

2

1

n

i

i

i

i

x

f

f

E

s

The {
[image: image249.wmf]i

s

} are weighting factors that depend on the nature of the uncertainties in the data {fi}. For measured values, the
[image: image250.wmf]i

i

f

D

=

s

, the experimental uncertainties. Often, we just take all the
[image: image251.wmf]1

=

i

s

, perhaps implying that the experimental uncertainties are all the same.. In that case,

[image: image252.wmf](

)

(

)

å

+

=

-

=

1

1

2

n

i

i

i

x

f

f

E

.

b.
Least squares fit

We wish to derive an f(x) which minimizes E. That means taking the derivative of E with respect to each adjustable parameter in f(x) and setting it equal to zero. We obtain a set of simultaneous linear equations with the adjustable parameters as the unknowns. These are called the normal equations.

2.
Least Squares Fit to a Polynomial

Assume that
[image: image253.wmf]3

2

)

(

dx

cx

bx

a

x

f

+

+

+

=

.

a.
Total squared error

[image: image254.wmf](

)

å

+

=

-

-

-

-

=

1

1

2

3

2

2

1

n

i

i

i

i

i

i

dx

cx

bx

a

f

E

s

We have four adjustable parameters: a, b, c, and d. Notice that, unlike the interpolating polynomial, there may be any number of data pairs, regardless of the number of parameters. Let’s take all the
[image: image255.wmf]1

=

i

s

.

The partial derivative with respect to the adjustable parameters are

[image: image256.wmf](

)

å

-

-

-

-

-

=

¶

¶

i

i

i

i

i

dx

cx

bx

a

f

a

E

3

2

2

[image: image257.wmf](

)

å

-

-

-

-

-

=

¶

¶

i

i

i

i

i

i

dx

cx

bx

a

f

x

b

E

3

2

2

[image: image258.wmf](

)

å

-

-

-

-

-

=

¶

¶

3

2

2

2

i

i

i

i

i

dx

cx

bx

a

f

x

c

E

[image: image259.wmf](

)

å

-

-

-

-

-

=

¶

¶

i

i

i

i

i

i

dx

cx

bx

a

f

x

d

E

3

2

3

2

b.
Normal equations

Collect the like powers of xi and set the derivatives equal to zero.

[image: image260.wmf]å

å

å

å

+

+

+

=

i

i

i

i

i

i

i

i

x

d

x

c

x

b

a

f

3

2

[image: image261.wmf]å

å

å

å

å

+

+

+

=

i

i

i

i

i

i

i

i

i

i

i

x

d

x

c

x

b

x

a

f

x

4

3

2

[image: image262.wmf]å

å

å

å

å

+

+

+

=

i

i

i

i

i

i

i

i

i

i

i

x

d

x

c

x

b

x

a

f

x

5

4

3

2

2

[image: image263.wmf]å

å

å

å

å

+

+

+

=

i

i

i

i

i

i

i

i

i

i

i

x

d

x

c

x

b

x

a

f

x

6

5

4

3

3

In terms of the matrix elements we used in solving simultaneous linear equations,

[image: image264.wmf]å

=

i

f

c

1

[image: image265.wmf]1

11

=

b

[image: image266.wmf]å

=

i

i

f

x

c

2

[image: image267.wmf]å

=

i

x

b

12

[image: image268.wmf]å

=

i

i

f

x

c

2

3

[image: image269.wmf]å

=

i

x

b

21

[image: image270.wmf]å

=

i

i

f

x

c

3

4

[image: image271.wmf]å

=

2

22

i

x

b

, etc.

The system is solved by any standard method, Gauss-Jordan, Gauss-Seidel, even by Cramer’s method.

c.
Accuracy of fit

We’d like to have some statistical measure of how good the fit between the {fi} and f(x) is. This will depend on the relation between E and the {
[image: image272.wmf]2

i

s

}. Let’s consider a quantity called (N = n + 1)

[image: image273.wmf](

)

å

=

-

=

C

N

i

i

i

i

f

x

f

1

2

2

2

)

(

s

.

If all
[image: image274.wmf]1

=

i

s

, then
[image: image275.wmf]E

=

C

2

. Now, on another hand, if
[image: image276.wmf]i

i

i

f

x

f

-

»

)

(

s

, then
[image: image277.wmf]g

N

-

»

C

2

, where g is the number of adjustable parameters and N – g is the number of degrees of freedom in the mathematical model for the data. We’d like to see
[image: image278.wmf]1

2

»

-

C

g

N

 for a “good” fit, while
[image: image279.wmf]1

2

<<

-

C

g

N

 indicates that the quality of the fit is ambiguous (sometimes called over fitted), and
[image: image280.wmf]1

2

>>

-

C

g

N

 indicates a “poor” fit.

3.
Least Squares Fit to Non-polynomial Function

The process is similar when fitting to a function that is not a polynomial. For instance, say that

[image: image281.wmf]x

ce

x

b

x

a

x

f

+

+

=

cos

ln

)

(

.

We wish to fit this function to the data shown at right. In this case, N = 10 and g = 3. The adjustable parameters are a, b and c.

[image: image282.wmf](

)

2

10

1

2

cos

ln

å

=

-

-

-

=

C

=

i

x

i

i

i

i

ce

x

b

x

a

f

E

The normal equations are:

[image: image283.wmf](

)

å

å

å

å

=

+

+

i

i

x

i

i

i

i

x

f

e

x

c

x

x

b

x

a

i

ln

ln

cos

ln

ln

2

[image: image284.wmf]å

å

å

å

=

+

+

i

i

x

i

i

i

i

x

f

e

x

c

x

b

x

x

a

i

cos

cos

)

(cos

cos

ln

2

[image: image285.wmf]å

å

å

å

=

+

+

i

i

i

i

x

i

x

x

i

x

i

e

f

e

c

e

x

b

e

x

a

2

)

(

cos

ln

[image: image286.wmf]616

.

1

259

.

63

348

.

5

794

.

6

=

+

-

c

b

a

[image: image287.wmf]383

.

2

009

.

49

108

.

5

347

.

5

-

=

-

+

-

c

b

a

[image: image288.wmf]773

.

26

506

.

1002

009

.

49

259

.

63

=

+

-

c

b

a

When solved by the Gauss-Jordan method, these yield

a = -1.041

b = -1.261

c = 0.031

[image: image289.wmf]x

e

x

x

x

f

031

.

0

cos

261

.

1

ln

041

.

1

)

(

+

-

-

=

[image: image290.wmf]1

7

926

.

0

2

<<

=

-

C

g

N

The goodness of fit between these data and this function is ambiguous. A glance at a graph verifies that the fit is “iffy.” [That’s the technical term for it.]

MatLab® Sidelight Number One

1.
Polynomials

a.
Representation

In MatLab®, polynomials are represented by a vector composed of the coefficients. Thusly,

[image: image291.wmf]]

[

)

(

1

2

3

1

2

2

3

3

3

o

o

a

a

a

a

p

a

x

a

x

a

x

a

x

p

=

Þ

+

+

+

=

b.
Evaluate

A polynomial is evaluated using the command polyval. If p is the vector of coefficients and x is the argument,
polyval(p,x) or y=polyval(p,x)
The roots command gives the roots of a polynomial, as elements of a vector.

r=roots(p)

If the roots of a polynomial are known, then the coefficient vector can be obtained by the poly command.

p=poly(r)

c.
Add, multiply, & divide

Polynomials are added by adding the vectors of their coefficients. The shorter vector has to be padded with zeros to make the two vectors the same length.
Multiplication of two polynomials is done with the conv command. c(x) = a(x) * b(x)

c = conv(a,b)

Division is done with the deconv command. u(x)/v(x) = q(x) + r(x)
[q,r] = deconv(u,v)

d.
derivatives

[image: image292.wmf]Þ

=

)

(

)

(

x

p

dx

d

x

k

k = polyder(p)

[image: image293.wmf]Þ

=

))

(

)

(

(

)

(

x

b

x

a

dx

d

x

k

k=polyder(a,b)

[image: image294.wmf]Þ

÷

÷

ø

ö

ç

ç

è

æ

=

)

(

)

(

)

(

)

(

x

v

x

u

dx

d

x

m

x

n

[n m] = polyder(u,v) followed by [k,r] = deconv(n,m)
2.
Curve Fitting & Interpolation

a.
Least squares

MatLab® fits data to a polynomial using the least squares method. Fitting an nth degree polynomial to a table of (x,y) points. If the number of data points is m, then n must be m-1 or less, and greater than 0.
p=polyfit(x,y,n)
Fitting to functions other than polynomials is done by rewriting the function in terms of a straight line, for instance by taking the log of both sides, etc.
b.
Interactive fitting

In the Tools menu of the Figure Window is a Basic Fitting tool. This can be used to fit a function to data interactively. See section 8.4 in the text.
c.
Interpolation

MatLab® has four interpolating techniques built-in. The command is interpl. It estimates

yi = f(xi), given a set of {x,y}.
yi = interpl(x,y,xi,’method’)

The methods available are

‘nearest’
returns the value of the nearest data point

‘linear’
carries out linear interpolation

‘spline’
carries out interpolation using a cubic polynomial based on the data points

surrounding the interpolated point

‘pchip’
carries out interpolation using a cubic Hermite polynomial.

VI.
Integration

We wish to evaluate the following definite integral:
[image: image295.wmf]ò

b

a

dx

x

f

)

(

.

We use numerical methods when

i) f(x) is known analytically but is too complicated to integrate analytically or

ii) f(x) is known only as a table of data.

A.
Newton-Cotes Formulæ

1.
Trapezoid Rule

a.
Graphs

Graphically, a definite integral is the area between the x-axis and the curve f(x). Areas below the axis are negative; areas above the axis are positive.

[image: image296.png]£

b.
Trapezoids

The area “under” the curve might be approximated most simply by a series of trapezoids and triangles.

[image: image297.png]< "4/:/{ S

Xp Kg X
)

[image: image298.wmf](

)

(

)

L

+

-

+

+

-

+

2

3

3

2

1

2

2

1

2

2

x

x

f

f

x

x

f

f

Notice that x1 = a and that x8 = b.

c.
Interpolating polynomial

In effect, we are replacing the integrand, f(x), by a straight line between each pair of points:

[image: image299.wmf]1

1

1

1

1

)

(

)

(

)

(

)

(

)

(

-

-

-

-

-

-

-

+

=

i

i

i

i

i

i

x

x

x

f

x

f

x

x

x

f

x

p

.

This can be checked by integrating p1(x) analytically.

[image: image300.wmf](

)

i

i

i

i

i

i

x

x

i

i

i

i

i

x

x

i

i

i

i

i

i

i

x

x

i

i

i

i

i

i

x

x

x

f

f

x

x

x

x

f

f

x

x

f

dx

x

x

f

f

x

x

f

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

2

)

(

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

+

-

=

-

-

-

+

ò

[image: image301.wmf]1

1

1

1

1

1

1

1

1

1

2

2

2

2

-

-

-

-

-

-

-

-

-

-

+

-

-

+

-

+

-

=

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

[image: image302.wmf]2

2

2

2

1

1

1

1

-

-

-

-

-

-

+

=

i

i

i

i

i

i

i

i

f

x

f

x

f

x

f

x

[image: image303.wmf](

)

(

)

1

1

2

1

-

-

+

-

=

i

i

i

i

f

f

x

x

check.

d.
Implementation

For N data points spanning [a,b], there are N – 1 trapezoids.
[image: image304.wmf](

)

å

=

-

-

+

-

=

N

i

i

i

i

i

f

f

x

x

T

2

1

1

2

If the data are uniformly spaced, then
[image: image305.wmf]h

x

x

i

i

=

-

-

1

 for all i, and

[image: image306.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

+

=

å

å

-

=

=

-

1

2

1

2

1

2

2

2

N

i

i

N

N

i

i

i

f

f

f

h

f

f

h

T

.

The lines in the MatLab® script might look like this:

n = 10

T = 0.0

for i=2:n

T = T + (x(i)-x(i-1))*(f(i)+f(i-1))/2.0

end

2.
Extension to Higher Order Formulæ

a.
Forward difference interpolating polynomial

We’ll take this opportunity to examine an alternative interpolating polynomial—the Forward Difference Polynomial.

Imagine we have a table of data pairs (xi,fi) which are uniformly spaced, with spacing h. The forward differences are just the familiar deltas.

first order:

[image: image307.wmf]1

2

1

2

1

)

(

)

(

)

(

f

f

x

f

x

f

x

f

-

=

-

=

D

second order:

[image: image308.wmf]))

(

)

(

(

))

(

)

(

(

)

(

)

(

)

(

1

2

2

3

1

2

1

2

x

f

x

f

x

f

x

f

x

f

x

f

x

f

-

-

-

=

D

-

D

=

D

Notice that the differences
[image: image309.wmf])

(

1

x

f

D

 and
[image: image310.wmf])

(

1

2

x

f

D

 are regarded as being evaluated at x = x1. Hence the term forward difference.

Notice, too, that the forward differences are related to the divided differences simply by multiplying by the denominators.

[image: image311.wmf][

]

1

2

1

,

)

(

x

x

f

h

x

f

×

=

D

[image: image312.wmf][

]

1

2

3

2

1

2

,

,

2

)

(

x

x

x

f

h

x

f

×

=

D

[image: image313.wmf]M

[image: image314.wmf][

]

1

2

1

1

,

,

,

,

!

)

(

x

x

x

x

f

h

n

x

f

n

n

n

n

L

+

×

=

D

Now, let’s expand the integrand f(x) in a Taylor’s Series about x = x1. Further, to increase the element of confusion, let
[image: image315.wmf]h

x

x

1

-

=

a

 so that
[image: image316.wmf]h

x

x

a

+

=

1

.

[image: image317.wmf]L

+

D

-

-

+

D

-

+

D

+

=

)

(

!

3

)

2

)(

1

(

)

(

!

2

)

1

(

)

(

)

(

)

(

1

3

1

2

1

1

x

f

x

f

x

f

x

f

x

f

a

a

a

a

a

a

Depending on how many terms are kept, this will give a polynomial in
[image: image318.wmf]a

 or in x.

b.
Simpson’s rule

Any number of formulæ may be created by replacing the integrand, f(x), with an interpolating polynomial of some specified degree. If
[image: image319.wmf])

(

)

(

)

(

)

(

1

1

1

x

f

x

f

x

p

x

f

D

+

=

»

a

, the Trapezoid Rule is recovered.

Perhaps f(x) has some curvature, so a second degree interpolating polynomial may serve better.

[image: image320.wmf](

)

ò

ò

ò

ú

û

ù

ê

ë

é

D

-

+

D

+

=

+

»

2

0

1

2

1

1

2

0

1

2

)

(

2

1

)

(

)

(

)

(

)

(

3

1

a

a

a

a

a

a

d

x

f

x

f

x

f

h

d

h

x

p

h

dx

x

f

x

x

[image: image321.wmf]ú

û

ù

ê

ë

é

D

+

D

+

=

)

(

3

1

)

(

2

)

(

2

1

2

1

1

x

f

x

f

x

f

h

Expand the differences. . .

[image: image322.wmf]ú

û

ù

ê

ë

é

+

-

+

-

+

»

ò

)

(

3

1

)

(

3

2

)

(

3

1

)

(

2

)

(

2

)

(

2

)

(

1

2

3

1

2

1

3

1

x

f

x

f

x

f

x

f

x

f

x

f

h

dx

x

f

x

x

[image: image323.wmf][

]

)

(

)

(

4

)

(

3

3

2

1

x

f

x

f

x

f

h

+

+

=

This is Simpson’s Rule, which integrates over segments of three data points (or two intervals of h) in one step.

c.
Implementation

[image: image324.wmf][

]

)

(

)

(

4

)

(

3

)

(

3

2

1

3

1

x

f

x

f

x

f

h

dx

x

f

x

x

+

+

=

ò

[image: image325.wmf][

]

)

(

)

(

4

)

(

3

)

(

5

4

3

5

3

x

f

x

f

x

f

h

dx

x

f

x

x

+

+

=

ò

[image: image326.wmf]M

[image: image327.wmf][

]

)

(

)

(

4

)

(

3

)

(

1

1

1

1

+

-

+

+

=

ò

+

-

n

n

n

x

x

x

f

x

f

x

f

h

dx

x

f

n

n

Add ‘em up. . .

[image: image328.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

+

»

å

å

ò

=

D

=

+

=

D

=

)

(

)

(

)

(

4

)

(

2

3

)

(

2

2

1

2

1

b

f

a

f

x

f

x

f

h

dx

x

f

n

i

i

i

n

i

i

i

b

a

Caveats:
i) the data points must be uniformly spaced.

ii) n + 1 must be odd, starting with 1 so that
[image: image329.wmf]h

a

b

n

-

=

 is even.

B.
Numerical Integration by Random Sampling

1.
Random Sampling

a.
Pseudorandom numbers

Random numbers are a sequence of numbers,
[image: image330.wmf](

)

123

,,,

zzz

L

, lying in the interval (0,1). There is no pattern in the progression of the numbers, nor is any number in the sequence related to any other number by a continuous function. There are statistical tests for randomness in a sequence of numbers but we won’t bother with them here.

The operation of a computer is deterministic, so truly random numbers cannot be generated by a computer program. However, sequences can be generated that appear to be random in that the sequence passes some of the statistical tests for randomness. Such a sequence of numbers is called pseudorandom.

Here is an algorithm for generating a sequence of pseudorandom numbers:

[image: image331.wmf](

)

m

c

x

a

x

i

i

,

mod

1

+

×

=

-

[image: image332.wmf]m

x

z

i

i

=

where a, c and m are integers and mod() is the modulus function. The pseudorandom number uniformly distributed in the interval (0,1) is zi.

In MatLab® , this looks like the following: [Using the built-in remainder function (rem).]

x = xo

for i=1:100

x1 = rem(a*x+c,em);

z = x1/em

x = x1;

end
This process generates a sequence of numbers {zi} that have some properties of random numbers, but in fact the sequence repeats itself—it’s periodic. The exact sequence depends on the initial value, xo, called the seed. Usually, m is a large integer, commonly a power of 2. The numbers c and m can have no common factor (c can be zero) while a is a multiple of a prime factor of m + 1. The period of the sequence is m, which is why m needs to be large. For instance, we might take
[image: image333.wmf]31

2

=

m

, c = 0 and a = 16807.

On the other hand, MatLab® has built-in random number generating functions, shown in Table 3-2.

b.
Intervals

Suppose we want our pseudorandom numbers to lie in the interval (a,b) rather than (0,1). This is easily done by scaling, or mapping onto the desired interval. Say
[image: image334.wmf]1

0

£

£

z

, then
[image: image335.wmf](

)

a

z

a

b

y

+

×

-

=

 will lie in the interval (a,b).

c.
Distributions

The example random number generator mentioned above produces numbers uniformly distributed in (0,1). This means that is (0,1) were divided into equal subintervals, an equal number of random numbers is expected in each of those subintervals. The probability of the next random number in the sequence falling in a particular subinterval is the same for all the subintervals spanning (0,1).

It is possible to form sequences of pseudorandom numbers which obey some other distribution function, such as Poisson or Gaussian, etc. We won’t get into that here.

2.
Samples of Random Sampling

a.
Coin toss

We have two outcomes for each toss, of equal probability. We’ll generate an integer, either 1 or 2, using a pseudorandom number generator.

zi = a uniformly distributed pseudorandom number in (0,1)

j = int(2*zi) + 1 = 1 or 2

We’ll say that if j = 1, it’s heads, if j = 2 it’s tails.

b.
Roll of a die

In this case we have six outcomes, of equal probability (we hope). So we need to produce an integer from 1 to 6.

j = int(6*zi)+1 = 1, 2, 3, 4, 5 or 6

Now, if it is known that the die is loaded, we use a different scheme, creating subintervals in (0,1) whose lengths reflect the relative probabilities of the faces of the die coming up. For instance, we might say that

	zi
	j

	
[image: image336.wmf]2

.

0

0

£

<

i

z

	1

	
[image: image337.wmf]34

.

0

2

.

0

£

<

i

z

	2

	
[image: image338.wmf]56

.

0

34

.

0

£

<

i

z

	3

	
[image: image339.wmf]72

.

0

56

.

0

£

<

i

z

	4

	
[image: image340.wmf]89

.

0

72

.

0

£

<

i

z

	5

	
[image: image341.wmf]1

89

.

0

<

<

i

z

	6

3.
Integration

Thinking again of the definite integral as an area under a curve, we envision a rectangle whose area is equal to the total area under the curve f(x). The area of that equivalent rectangle is just the length of the integration interval (a,b) times the average value of the integrand over that interval. How to take that average? One way is to sample the integrand at randomly selected points.

a.
One dimensional definite integrals

[image: image342.wmf]ò

å

=

@

1

0

1

)

(

1

)

(

n

i

i

x

f

n

dx

x

f

, where the {xi} form a pseudorandom sequence uniformly distributed in (0,1). Over some other interval,
[image: image343.wmf]å

ò

=

-

@

n

i

i

b

a

x

f

n

a

b

dx

x

f

1

)

(

1

)

(

)

(

, where
[image: image344.wmf]{

}

(

)

b

a

x

i

,

Î

.

Since we are just averaging over a list of numbers, the error is O[
[image: image345.wmf]n

1

], just like the deviation of the mean.

example:
[image: image346.wmf]ò

1

0

sin

xdx

[image: image347.wmf][

]

1313

.

0

3904

.

0

sin

01335

.

0

sin

00075

.

0

sin

3

1

sin

1

0

=

+

+

=

ò

xdx

[image: image348.wmf][

]

2910

.

0

8776

.

0

sin

3904

.

0

sin

01335

.

0

sin

00075

.

0

sin

4

1

sin

1

0

=

+

+

+

=

ò

xdx

[image: image349.wmf][

]

2524

.

0

0992

.

0

sin

8776

.

0

sin

3904

.

0

sin

01335

.

0

sin

00075

.

0

sin

5

1

sin

1

0

=

+

+

+

+

=

ò

xdx

[image: image350.wmf]M

The exact result is 0.460.

b.
Multi-dimension integrals

The random sampling approach is particularly useful with 2- and 3-dimensional integrals. The other methods of numerical integration quickly become too messy to set up.

[image: image351.wmf]ò

ò

ò

å

=

@

1

0

1

0

1

0

1

)

,

,

(

1

)

,

,

(

n

i

i

i

i

z

y

x

f

n

dxdydz

z

y

x

f

,

where (xi,yi,zi) is an ordered triple, each member uniformly distributed on (0,1).

We may use three separate sequences of pseudorandom numbers or simply take numbers from one sequence three at a time.

c.
Alternate integration regions

i)
[image: image352.wmf](

)

(

)

(

)

ò

ò

ò

å

=

-

-

-

@

z

z

y

y

x

x

b

a

b

a

b

a

n

i

i

i

i

z

z

y

y

x

x

z

y

x

f

n

a

b

a

b

a

b

dxdydz

z

y

x

f

1

)

,

,

(

1

)

,

,

(

ii) Suppose the integration region is not rectangular. Then an extra step is needed, to test for and discard random points that fall outside the integration region.

e.g., a circle—discard points for which
[image: image353.wmf]1

2

2

>

+

i

i

y

x

, as shown in the following diagram.

[image: image354.png]

Why do it this way; to ensure that the points are uniformly distributed in all directions. If points are taken uniformly distributed in the radius, the points will be more widely spread the further out from the center they lie, not uniformly spread over the area of the circle.

example: compute the volume of a sphere of radius R. In this situation, the integrand is 1.

[image: image355.wmf]3

0

2

0

0

2

3

4

sin

R

dr

d

d

r

V

R

×

=

=

ò

ò

ò

p

j

q

q

p

p

Numerically,

[image: image356.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

3

3

1

8

2

1

1

2

2

2

2

R

n

m

m

n

R

n

R

R

R

R

R

R

V

R

z

y

x

m

i

i

i

i

=

=

-

-

-

-

-

-

@

£

+

+

=

å

.

Notice this: the total number of random points generated is n. However, only m of those lie within the spherical volume. The spherical volume we obtain is equal to
[image: image357.wmf]n

m

 times the volume of a cube whose side is 2R. It’s interesting to see what this fraction is.

[image: image358.wmf]L

52359

.

0

6

8

3

4

3

3

=

=

×

=

p

p

R

R

V

V

cube

sphere

.

The ratio
[image: image359.wmf]n

m

 should approach this constant as we generate more points and include them in the summation.

Another way to look at this
[image: image360.wmf]n

m

 issue is to say that f(x) = 1 when
[image: image361.wmf]2

2

2

2

R

z

y

x

i

i

i

£

+

+

 and 0 when
[image: image362.wmf]2

2

2

2

R

z

y

x

i

i

i

>

+

+

. Then there is no distinction between n and m, and the summation is a sum of n – m zeros and m ones.

d.
Example

Evaluate
[image: image363.wmf]òò

W

+

+

dxdy

y

x

1

ln(

sin

, where
[image: image364.wmf]W

 is the region
[image: image365.wmf]2

2

2

2

1

2

1

r

y

x

£

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

.

[image: image366.wmf]2

2

2

2

2

2

2

1

2

1

1

2

2

1

2

1

1

2

)

,

(

1

4

)

,

(

1

2

1

2

1

1

ln(

sin

r

y

x

m

i

i

i

r

y

x

m

i

i

i

i

i

i

i

y

x

f

n

r

y

x

f

n

r

r

dxdy

y

x

I

£

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

=

£

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

=

W

å

å

òò

=

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

-

-

+

@

+

+

=

[If you want to try it, for r = 0.5, I = 0.57.]

This is equivalent to averaging the integrand over a circular area, thusly

[image: image367.wmf]2

2

2

2

1

2

1

1

2

)

,

(

1

1

ln(

sin

r

y

x

m

i

i

i

i

i

y

x

f

m

r

dxdy

y

x

£

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

=

W

å

òò

@

+

+

p

.

Of course, often the shape of the region of integration isn’t a simple rectangle or circle.

e. Example script

% Script to carry out 2-dim integration via random sampling

f=inline('sin(sqrt(log(x+y+1)))')

n=100;

r=0.5;

r2=r*r;

sum=0;

ax=0.5-r;

ay=0.5-r;

bx=r+0.5;

by=r+0.5;
m=0
for i=1:n

 ex=rand*(bx-ax)+ax;

 why=rand*(by-ay)+ay;

 are=(ex-0.5)^2+(why-0.5)^2;

 if are<=r2

 sum=sum+f(ex,why);
 m=m+1;
 end

end

sum=sum*(by-ay)*(bx-ax)/m;

fprintf('Integral of f(x,y) over the circle = %g',sum)

MatLab® Sidelight Number Two

1.
Nonlinear Equations

a.
Fzero

The built-in MatLab® command for solving individual equations is named fzero.
x = fzero(‘function’,x0)
The initial guess is x0; ‘function’ is either a mathematical expression typed as a string, or the name of a user defined function. The function has to entered in standard form: f(x) = 0. ‘function’ is the f(x). If entered as a string, the function cannot include redefined variables.

The initial guess can be entered as a single value, or as a 2-element vector such that the function crosses the x-axis between x0(1) and x0(2). (As in the bisection or secant methods.)

b.
Maximun/minimum

A function to find the minimum of a function is fminbnd.
[x fval] = fminbnd(‘function’,x1,x2)

The command finds the minimum of the function, if any, lying in the interval (x1,x2).

2.
Integration

a.
Integrand as function
The quad command evaluates a definite integral using an elaborated version of Simpson’s Rule. The method adjusts the step size as it goes along.

[image: image368.wmf]Þ

ò

b

a

dx

x

f

)

(

 q = quad(‘function’,a,b,tol)

The parameter tol is an optional tolerance. If tol is not specified, MatLab® assumes
[image: image369.wmf]6

10

-

=

tol

.
The quadl command carries out the integration using another method, the adaptive Lobatto method. That’s quad-L.

b.
Integrand as data table

When the integrand is available as a table of data pairs, MatLab® uses the Trapezoid Rule.
q = trapz(x,y)

c.
Random numbers
For generating uniformly distributed pseudorandom numbers, MatLab® has the command rand.

A single random number in (0,1): z = rand

A vector of n random numbers in (0,1): z =zrand(1,n)

An nxn matrix of random numbers in (0,1): z = rand(n)

An mxn matrix of random numbers in (0,1): z = rand(m,n)

A row vector with n elements consisting of a random permutation of integers 1 – n:

m = randperm(n)

VII.
Ordinary Differential Equations

A.
Linear First Order Equations

We seek to solve the following equation for x(t):
[image: image370.wmf])

,

(

t

x

f

dt

dx

=

. There are analytical methods of solution: integration, separation of variables, infinite series, etc. In practice these may not be convenient or even possible. In such cases we resort to a numerical solution. The x(t) takes the form of a table of data pairs {ti,xi}, rather than a function.

1.
One Step Methods

a.
Taylor’s Series

Many numerical solutions derive from the Taylor’s series expansion

[image: image371.wmf]L

L

+

-

+

+

-

+

-

+

=

p

o

p

p

o

o

o

o

o

o

dt

t

x

d

p

t

t

dt

t

x

d

t

t

dt

t

dx

t

t

t

x

t

x

)

(

!

)

(

)

(

!

2

)

(

)

(

)

(

)

(

)

(

2

2

2

.

We are given
[image: image372.wmf])

,

(

t

x

f

dt

dx

=

, so we could substitute this into the series thusly:

[image: image373.wmf]L

L

+

-

+

+

-

+

-

+

=

-

-

1

1

2

)

,

(

!

)

(

)

,

(

!

2

)

(

)

,

(

)

(

)

(

)

(

p

o

o

p

p

o

o

o

o

o

o

o

o

dt

t

x

f

d

p

t

t

dt

t

x

df

t

t

t

x

f

t

t

t

x

t

x

.

However, to obtain
[image: image374.wmf]dt

df

,
[image: image375.wmf]2

2

dt

f

d

,
[image: image376.wmf]3

3

dt

f

d

, etc., we have to use the chain rule.

[image: image377.wmf]dt

dx

x

f

t

f

dt

df

¶

¶

+

¶

¶

=

[image: image378.wmf]ú

û

ù

ê

ë

é

¶

¶

+

¶

¶

¶

¶

+

¶

+

¶

¶

¶

+

¶

¶

=

x

f

f

x

f

x

f

dx

f

f

t

x

f

f

t

f

dt

f

d

2

2

2

2

2

2

2

2

2

It’s easy to see that this gets very messy rather quickly.

b.
Euler’s Method

Let’s keep just the first two terms of the Taylor’s series:
[image: image379.wmf]o

o

o

o

o

T

t

x

f

t

t

t

x

t

x

+

-

+

=

)

,

(

)

(

)

(

)

(

, where the To is the sum of all the terms we’re dropping—call it the truncation error. In what follows, we will have to distinguish between the correct or exact solution, x(t), and our approximate solution, xi. We hope
[image: image380.wmf])

(

i

i

t

x

x

@

.

With the Euler Method, our algorithm is [given to, x(to) = xo and f(x,t)]

[image: image381.wmf])

,

(

)

(

1

1

o

o

o

o

t

x

f

t

t

x

x

-

+

=

[image: image382.wmf])

,

(

)

(

1

1

1

2

1

2

t

x

f

t

t

x

x

-

+

=

[image: image383.wmf]M

[image: image384.wmf])

,

(

)

(

1

1

i

i

i

i

i

i

t

x

f

t

t

x

x

-

+

=

+

+

[image: image385.wmf]M

example:
[image: image386.wmf]t

dt

dx

13

=

, with to = 0 and xo = 4 and
[image: image387.wmf]5

.

0

)

(

1

=

=

-

+

h

t

t

i

i

.

The algorithm is:
[image: image388.wmf](

)

i

i

i

i

i

t

t

t

x

x

13

)

(

1

1

-

+

=

+

+

.

The first few steps in the numerical solution are shown in the following table.

	i
	t
	x

	0
	0
	4

	1
	.5
	4

	2
	1
	7.25

	3
	1.5
	13.75

	4
	2
	23.5

	
[image: image389.wmf]M

	
[image: image390.wmf]M

	
[image: image391.wmf]M

example: Problem 9-35

[image: image392.wmf]333

.

83

3

0035

.

0

2

=

-

-

=

o

v

v

dt

dv

i = 0, 1, 2, 3, 4, 5, . . .

[image: image393.wmf]1

.

0

=

D

t

[image: image394.wmf])

3

*

0035

.

0

(

*

1

.

0

2

1

-

-

+

=

+

i

i

i

v

v

v

	i
	t (sec)
	v (m/s)

	0
	0
	83.3

	1
	.1
	80.6

	2
	.2
	78.0

	3
	.3
	75.6

	4
	.4
	73.3

	5
	.5
	71.1

	6
	.6
	69.0

	7
	.7
	67.1

2.
Error

a.
Truncation error

[image: image395.wmf]1

1

)

,

(

+

+

+

+

=

i

i

i

i

i

T

t

x

hf

x

x

Not only do we not know what the exact solution is, we don’t know how far the numerical solution deviates from the exact solution. In the case of a truncated Taylor’s series, we can estimate the truncation error by evaluating the first term that is dropped. For Euler’s formula, that’s the third term of the series.

[image: image396.wmf])

(

2

)

(

2

2

2

1

i

i

i

x

f

h

dt

x

df

h

T

¢

=

»

+

Here’s a graph of both the exact (but unknown) and the numerical solutions.

[image: image397.png]

The deviation from the exact x(t) may tend to increase as the total truncation error accumulates from step to step, the further we get from the initial values (to,xo). The lesson is—make h small.

b.
Round-off error

Since the values are stored in finite precision, round-off error accumulates from step to step also. Therefore, in traversing an interval
[image: image398.wmf]b

t

o

£

£

, we’d like to have as few steps as possible. In other words, we want h to be large. Consequently, the two sources of error put competing pressure on our choice of step size, h. If we have some knowledge of x(t), we may be able to achieve a balance between large and small step size. Otherwise, it’s trial and error.

c.
Higher order methods

The many numerical algorithms that have been developed over the years for solving differential equation seek to reduce the effect of truncation error by using more terms from the Taylor’s series, or in some way correcting for the truncation error at each step. In that way, fewer, larger steps can be used.

MatLab® Sidelight Number Three

1.
First Order Ordinary Differential Equations (ODE)
In standard form,

[image: image399.wmf])

,

(

y

x

f

dx

dy

=

We want to solve for y(x). In Physics & Engineering, of course, we often have
[image: image400.wmf])

,

(

t

y

f

dt

dy

=

, in which case we wish to solve for y(t); or perhaps we have
[image: image401.wmf])

,

,

(

t

x

v

f

dt

dv

x

x

=

, etc.

MatLab® has several built-in ODE solvers, which all have the form of

[t,y]=solver_name(‘ODEfunc’,tspan,y0)

ODEfunc is the name of the function file which defines the differential equation, the f(t,y).

tspan is a vector that specifies the interval of the independent variable spanned by the
solution.

y0 is the initial value of y.

[t,y] is the output, in the form of two column vectors. Subsequently, we would plot(t,y).

a.
Function file

The function file calculates
[image: image402.wmf]dt

dy

 for given values of y & t. That is, t & y are input arguments to the function, and the value of f(t,y) is returned.
b.
Solvers

Table 9-1 lists some of the MatLab® initial-value ODE solvers. Some are more sophisticated than others; some are adapted to problems in which the solution is not smooth, or is rapidly varying, etc. In most physical and engineering applications, things are smooth and not too-rapidly varying, so most times ode45 should suffice.

[t,y] = ode45(‘function’,[0:0.1:10],100)

plot(t,y)

MatLab® also has boundary value and partial differential equation solvers, but those are not discussed in the introductory text, nor in this class.

example: Problem 9-35

[image: image403.wmf]km/hr

v

m/s

v

dt

dv

o

2

300

3

0035

.

0

2

=

-

-

=

v0 = 300/60/60*1000
[t,v] = ode45(‘drag’,[0:0.1:15],v0)
plot(t,v)

function dvdt = drag(t,v)
dvdt = -0.0035*v*v-3;
B.
Second Order Ordinary Differential Equations

[image: image404.wmf])

,

,

(

)

,

,

(

2

2

x

x

t

f

dt

dx

x

t

f

x

dt

x

d

¢

=

=

¢

¢

=

, with initial conditions
[image: image405.wmf]o

x

x

=

)

0

(

 and
[image: image406.wmf]o

v

x

=

¢

)

0

(

.

1.
Reduction to a System of First Order Equations

a.
New Variables

We start by introducing new variable names:
[image: image407.wmf]t

z

=

1

;
[image: image408.wmf]x

z

=

2

;
[image: image409.wmf]x

z

¢

=

3

;
[image: image410.wmf]x

z

¢

¢

=

4

. The first three variables are the solutions to the following differential equations:

[image: image411.wmf]1

1

=

¢

z

[image: image412.wmf]3

2

z

x

z

=

¢

=

¢

[image: image413.wmf]4

3

z

x

z

=

¢

¢

=

¢

These form a set of three simultaneous first order differential equations,

[image: image414.wmf]1

1

=

¢

z

[image: image415.wmf]3

2

z

z

=

¢

[image: image416.wmf])

,

,

(

3

2

1

4

3

z

z

z

f

z

z

=

=

¢

with the initial conditions
[image: image417.wmf]0

)

0

(

1

=

z

,
[image: image418.wmf]o

x

z

=

)

0

(

2

 and
[image: image419.wmf]o

v

z

=

)

0

(

3

 respectively.

b.
Solution

Any method, such as Euler’s, may now be applied to each first order equation in turn. Thusly:

[image: image420.wmf]1

,

1

1

,

1

×

+

=

+

h

z

z

i

i

[image: image421.wmf]i

i

i

z

h

z

z

,

3

,

2

1

,

2

×

+

=

+

[image: image422.wmf]i

i

i

f

h

z

z

×

+

=

+

,

3

1

,

3

.

The MatLab® code might look like this:

z(1) = 0.0

z(2) = xo

z(3) = vo

h = 0.01

for i=1:100

z(1) = z(1) + h

z(2) = z(2) +h*z(3)

z(3) = z(3) + h*f(z(1),z(2),z(3))

end
c.
Example

[image: image423.wmf])

cos(

9

t

x

x

×

+

-

¢

-

=

¢

¢

w

[image: image424.wmf]o

x

x

=

)

0

(

,
[image: image425.wmf]o

v

x

=

¢

)

0

(

In this case,
[image: image426.wmf])

cos(

9

)

,

,

(

t

x

x

x

t

f

×

+

-

¢

-

=

¢

w

, so the algorithm looks like

[image: image427.wmf]1

,

1

1

,

1

×

+

=

+

h

z

z

i

i

[image: image428.wmf]i

i

i

z

h

z

z

,

3

,

2

1

,

2

×

+

=

+

[image: image429.wmf][

]

)

z

cos(

z

h

z

z

i

,

i

,

i

,

i

,

1

3

3

1

3

9

×

+

-

-

×

+

=

+

w

.

2.
Difference Equations

An alternative approach to second order ordinary differential equations is to replace the derivatives with finite differences. The differential equation is replaced by a difference equation.

a.
Difference equation

Using forward divided differences, we obtain

[image: image430.wmf]h

x

x

dt

dx

x

i

i

-

@

=

¢

+

1

 and
[image: image431.wmf]2

1

1

1

1

2

2

2

1

h

x

x

x

h

x

x

h

x

x

h

dt

x

d

x

i

i

i

i

i

i

i

-

+

-

+

+

-

=

÷

ø

ö

ç

è

æ

-

-

-

@

=

¢

¢

.

Let’s say that we have the second order differential equation

[image: image432.wmf]d

ct

bx

x

a

x

+

+

+

¢

=

¢

¢

.

The corresponding difference equation is

[image: image433.wmf]d

ct

bx

h

x

x

a

h

x

x

x

i

i

i

i

i

i

i

+

+

+

÷

ø

ö

ç

è

æ

-

=

+

-

+

-

+

1

2

1

1

2

.

The next step is to solve for the “latest” x.

[image: image434.wmf]2

2

2

1

1

1

2

dh

t

ch

x

bh

ahx

ahx

x

x

x

i

i

i

i

i

i

i

+

+

+

-

=

+

-

+

-

+

[image: image435.wmf](

)

(

)

2

2

1

2

1

2

1

dh

t

ch

x

x

bh

ah

x

ah

i

i

i

i

+

+

-

+

-

=

-

-

+

[image: image436.wmf](

)

[

]

2

2

1

2

1

2

1

1

dh

t

ch

x

x

bh

ah

ah

x

i

i

i

i

+

+

-

+

-

-

=

-

+

The initial conditions are applied by setting to = 0, x0 = xo and
[image: image437.wmf]h

v

x

x

o

o

-

=

-

1

.

b.
Examples

i)
[image: image438.wmf]g

x

-

=

¢

¢

Here,
[image: image439.wmf]0

=

=

=

c

b

a

 and d = -g.

[image: image440.wmf]2

1

1

2

gh

x

x

x

i

i

i

-

-

=

-

+

ii)
[image: image441.wmf]g

x

x

-

¢

-

=

¢

¢

This time, a = -1, b = 0, c = 0 and d = -g.

[image: image442.wmf](

)

[

]

2

1

1

2

1

1

gh

x

x

h

h

x

i

i

i

-

-

+

+

=

-

+

c.
Discretization error

Replacing continuous derivatives with finite differences introduces what is known as discretization error. Implicitly, we are assuming a straight line between xi and xi+1 and between
[image: image443.wmf]i

x

¢

 and
[image: image444.wmf]1

+

¢

i

x

 as well. There will always be some
[image: image445.wmf])

(

1

1

+

+

-

=

D

i

i

t

x

x

 at each step which will then accumulate over the sequence of steps in the numerical solution.

�

�

�

xi�
fi�
�
.24�
0.23�
�
.65�
-0.26�
�
.95�
-1.10�
�
1.24�
-0.45�
�
1.73�
0.27�
�
2.01�
0.10�
�
2.23�
-0.29�
�
2.52�
0.24�
�
2.77�
0.56�
�
2.99�
1.00�
�

�

�

�

% Script to implement Newton's Method

del=1

x=3

k=0

func=inline('x^3-587')

deriv=inline('3*x^2')

while del >= 0.00005

 k=k+1

 if k <= 10

 xnew=x-func(x)/deriv(x);

 del=abs((xnew-x)/x);

 disp(x);disp(func(x));disp(del)

 x=xnew;

 end

end

� EMBED Excel.Chart.8 \s ���

% Script to implement Gauss-Jordan Elimination

b=[4 1 2;1 3 1;1 2 5];

c=[16;10;12];

a=[b c];

np=size(b);

n=np(1);

for k=1:n

 for m=k+1:n+1

 a(k,m)=a(k,m)/a(k,k);

 end

 a(k,k)=1;

 for l=1:n

 if l~=k

 for m=k+1:n+1

 a(l,m)=a(l,m)-a(l,k)*a(k,m);

 end

 a(l,k)=0;

 end

 end

end

a

% Script to implement Gauss-Seidel

b=[4 1 2;1 3 1;1 2 5];

c=[16;10;12];

xold=[1;1;1];

xnew=xold;

np=size(b);

n=np(1);

flag=1;

while flag > 0

 for k=1:n

 sum=0;

 for l=1:n

 if k~=l

 sum=sum+b(k,l)*xnew(l);

 end

 end

 xnew(k)=(c(k)-sum)/b(k,k);

 end

 for k=1:n

 if abs((xnew(k)-xold(k))/xold(k)) > 0.0005

 xold=xnew;

 break

 else

 flag=0;

 end

 end

end

xnew

PAGE
52

_1148728060.unknown

_1208989474.unknown

_1432561381.unknown

_1432561655.unknown

_1432562146.unknown

_1432562290.unknown

_1432562488.unknown

_1432562530.unknown

_1432562565.unknown

_1432562592.unknown

_1439967268.unknown

_1432562585.unknown

_1432562557.unknown

_1432562505.unknown

_1432562515.unknown

_1432562497.unknown

_1432562353.unknown

_1432562466.unknown

_1432562480.unknown

_1432562384.unknown

_1432562310.unknown

_1432562324.unknown

_1432562299.unknown

_1432562203.unknown

_1432562261.unknown

_1432562277.unknown

_1432562253.unknown

_1432562160.unknown

_1432562166.unknown

_1432562153.unknown

_1432561918.unknown

_1432562055.unknown

_1432562097.unknown

_1432562105.unknown

_1432562062.unknown

_1432562018.unknown

_1432562025.unknown

_1432561992.unknown

_1432561768.unknown

_1432561812.unknown

_1432561862.unknown

_1432561787.unknown

_1432561694.unknown

_1432561715.unknown

_1432561663.unknown

_1432561526.unknown

_1432561611.unknown

_1432561636.unknown

_1432561643.unknown

_1432561629.unknown

_1432561569.unknown

_1432561579.unknown

_1432561560.unknown

_1432561457.unknown

_1432561493.unknown

_1432561506.unknown

_1432561484.unknown

_1432561411.unknown

_1432561430.unknown

_1432561390.unknown

_1432561158.unknown

_1432561280.unknown

_1432561335.unknown

_1432561355.unknown

_1432561370.unknown

_1432561346.unknown

_1432561314.unknown

_1432561322.unknown

_1432561302.unknown

_1432561231.unknown

_1432561258.unknown

_1432561269.unknown

_1432561241.unknown

_1432561186.unknown

_1432561206.unknown

_1432561166.unknown

_1432561010.unknown

_1432561091.unknown

_1432561132.unknown

_1432561146.unknown

_1432561125.unknown

_1432561035.unknown

_1432561061.unknown

_1432561026.unknown

_1286280784.unknown

_1287321234.unknown

_1287664921.unknown

_1432560988.unknown

_1432561001.unknown

_1287665463.unknown

_1287665723.unknown

_1356868493.unknown

_1287664998.unknown

_1287662408.unknown

_1287663707.unknown

_1287663736.unknown

_1287663624.unknown

_1287321344.unknown

_1287320344.unknown

_1287320476.unknown

_1286281073.unknown

_1283690339.unknown

_1285676193.unknown

_1286280727.unknown

_1285672923.unknown

_1268997063.unknown

_1268997085.unknown

_1218457244.unknown

_1268997051.unknown

_1208993875.unknown

_1208993126.xls
Chart3

		0.24		0.24

		0.65		0.65

		0.95		0.95

		1.24		1.24

		1.73		1.73

		2.01		2.01

		2.23		2.23

		2.52		2.52

		2.77		2.77

		2.99		2.99

data

fit

x

f(x)

Least Squares Fit

0.23

0.3001796636

-0.26

-0.4960348886

-1.1

-0.5999490569

-0.45

-0.5263750435

0.27

-0.1958252623

0.1

0.0408055646

-0.29

0.2257590183

0.24

0.4482654989

0.56

0.6090346407

1

0.722815187

Sheet1

		

				x		f		f(x)

				0.24		0.23		0.3001796636

				0.65		-0.26		-0.4960348886

				0.95		-1.1		-0.5999490569

				1.24		-0.45		-0.5263750435

				1.73		0.27		-0.1958252623

				2.01		0.1		0.0408055646

				2.23		-0.29		0.2257590183

				2.52		0.24		0.4482654989

				2.77		0.56		0.6090346407

				2.99		1		0.722815187

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

data

fit

x

f(x)

Least Squares Fit

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		

Sheet3

		

_1148897027.unknown

_1148907125.unknown

_1149067754.unknown

_1149250637.unknown

_1149251439.unknown

_1149252898.unknown

_1149253314.unknown

_1149253454.unknown

_1149253813.unknown

_1207330621.unknown

_1149253873.unknown

_1149253812.unknown

_1149253364.unknown

_1149253245.unknown

_1149253278.unknown

_1149253120.unknown

_1149252489.unknown

_1149252600.unknown

_1149252763.unknown

_1149252499.unknown

_1149251496.unknown

_1149252182.unknown

_1149252360.unknown

_1149251766.unknown

_1149251465.unknown

_1149250808.unknown

_1149250996.unknown

_1149251030.unknown

_1149250932.unknown

_1149250754.unknown

_1149250782.unknown

_1149250662.unknown

_1149249704.unknown

_1149250149.unknown

_1149250310.unknown

_1149250382.unknown

_1149250189.unknown

_1149250287.unknown

_1149250082.unknown

_1149250104.unknown

_1149250131.unknown

_1149250054.unknown

_1149153833.unknown

_1149154746.unknown

_1149192664.unknown

_1149154477.unknown

_1149068935.unknown

_1149069116.unknown

_1149153493.unknown

_1149069426.unknown

_1149069046.unknown

_1149067789.unknown

_1148980893.unknown

_1149067373.unknown

_1149067697.unknown

_1149067710.unknown

_1149067631.unknown

_1149067660.unknown

_1149067530.unknown

_1149066791.unknown

_1149066984.unknown

_1149067186.unknown

_1149066813.unknown

_1149066334.unknown

_1149066729.unknown

_1149066761.unknown

_1149066706.unknown

_1149066042.unknown

_1148908765.unknown

_1148909525.unknown

_1148909959.unknown

_1148910249.unknown

_1148910540.unknown

_1148909906.unknown

_1148909313.unknown

_1148909478.unknown

_1148909078.unknown

_1148907489.unknown

_1148907933.unknown

_1148908167.unknown

_1148907634.unknown

_1148907277.unknown

_1148907381.unknown

_1148907432.unknown

_1148907239.unknown

_1148902683.unknown

_1148905819.unknown

_1148906096.unknown

_1148906993.unknown

_1148907062.unknown

_1148906883.unknown

_1148906030.unknown

_1148906045.unknown

_1148906076.unknown

_1148906009.unknown

_1148904027.unknown

_1148904881.unknown

_1148904917.unknown

_1148904552.unknown

_1148903482.unknown

_1148903929.unknown

_1148902708.unknown

_1148903183.unknown

_1148897733.unknown

_1148901941.unknown

_1148902398.unknown

_1148902598.unknown

_1148902635.unknown

_1148902426.unknown

_1148902120.unknown

_1148897951.unknown

_1148901817.unknown

_1148897796.unknown

_1148897421.unknown

_1148897487.unknown

_1148897703.unknown

_1148897470.unknown

_1148897254.unknown

_1148897379.unknown

_1148897224.unknown

_1148817255.unknown

_1148818924.unknown

_1148895246.unknown

_1148896143.unknown

_1148896366.unknown

_1148896411.unknown

_1148896268.unknown

_1148895819.unknown

_1148895976.unknown

_1148895625.unknown

_1148819217.unknown

_1148894657.unknown

_1148895049.unknown

_1148819269.unknown

_1148819046.unknown

_1148819080.unknown

_1148819010.unknown

_1148817814.unknown

_1148818259.unknown

_1148818751.unknown

_1148818866.unknown

_1148818647.unknown

_1148818022.unknown

_1148818094.unknown

_1148817975.unknown

_1148817597.unknown

_1148817731.unknown

_1148817766.unknown

_1148817708.unknown

_1148817355.unknown

_1148817557.unknown

_1148817335.unknown

_1148816176.unknown

_1148816886.unknown

_1148817148.unknown

_1148817202.unknown

_1148817226.unknown

_1148817169.unknown

_1148817024.unknown

_1148817116.unknown

_1148816973.unknown

_1148816632.unknown

_1148816661.unknown

_1148816787.unknown

_1148816640.unknown

_1148816402.unknown

_1148816596.unknown

_1148816219.unknown

_1148730241.unknown

_1148732550.unknown

_1148732657.unknown

_1148732693.unknown

_1148732608.unknown

_1148732156.unknown

_1148732501.unknown

_1148731777.unknown

_1148728534.unknown

_1148728974.unknown

_1148729164.unknown

_1148729978.unknown

_1148728791.unknown

_1148728319.unknown

_1148728428.unknown

_1148728124.unknown

_1147944280.unknown

_1148462006.unknown

_1148557124.unknown

_1148558195.unknown

_1148727470.unknown

_1148727582.unknown

_1148727851.unknown

_1148727517.unknown

_1148558295.unknown

_1148558343.unknown

_1148558261.unknown

_1148557774.unknown

_1148557965.unknown

_1148558132.unknown

_1148558133.unknown

_1148558146.unknown

_1148558040.unknown

_1148557940.unknown

_1148557916.unknown

_1148557572.unknown

_1148557674.unknown

_1148557528.unknown

_1148465534.unknown

_1148556746.unknown

_1148557053.unknown

_1148557079.unknown

_1148556954.unknown

_1148556069.unknown

_1148556084.unknown

_1148465821.unknown

_1148462594.unknown

_1148464259.unknown

_1148465228.unknown

_1148462624.unknown

_1148462461.unknown

_1148462521.unknown

_1148462375.unknown

_1148392478.unknown

_1148396096.unknown

_1148461240.unknown

_1148461475.unknown

_1148461596.unknown

_1148461426.unknown

_1148461172.unknown

_1148461208.unknown

_1148396274.unknown

_1148392775.unknown

_1148392918.unknown

_1148392960.unknown

_1148392851.unknown

_1148392656.unknown

_1148392722.unknown

_1148392576.unknown

_1147948027.unknown

_1148391647.unknown

_1148392444.unknown

_1148392073.unknown

_1148392430.unknown

_1148391595.unknown

_1148391620.unknown

_1148391499.unknown

_1147947236.unknown

_1147947969.unknown

_1147947999.unknown

_1147947904.unknown

_1147944947.unknown

_1147945876.unknown

_1147944291.unknown

_1146059435.unknown

_1146571340.unknown

_1146659933.unknown

_1146661645.unknown

_1146661906.unknown

_1147944165.unknown

_1147944266.unknown

_1146661817.unknown

_1146660095.unknown

_1146660253.unknown

_1146660059.unknown

_1146571905.unknown

_1146659691.unknown

_1146659886.unknown

_1146659663.unknown

_1146571630.unknown

_1146571687.unknown

_1146571508.unknown

_1146059985.unknown

_1146569883.unknown

_1146571191.unknown

_1146571278.unknown

_1146570148.unknown

_1146060079.unknown

_1146569850.unknown

_1146060025.unknown

_1146059763.unknown

_1146059894.unknown

_1146059966.unknown

_1146059865.unknown

_1146059642.unknown

_1146059677.unknown

_1146059594.unknown

_1145705435.unknown

_1145706382.unknown

_1146058970.unknown

_1146059034.unknown

_1146059379.unknown

_1146058999.unknown

_1145706796.unknown

_1146058948.unknown

_1145706408.unknown

_1145706023.unknown

_1145706338.unknown

_1145706358.unknown

_1145706199.unknown

_1145705904.unknown

_1145705962.unknown

_1145705473.unknown

_1145704271.unknown

_1145705162.unknown

_1145705334.unknown

_1145705412.unknown

_1145705290.unknown

_1145704929.unknown

_1145704969.unknown

_1145704876.unknown

_1145703508.unknown

_1145703591.unknown

_1145704208.unknown

_1145703545.unknown

_1145703244.unknown

_1145703339.unknown

_1145703156.unknown

