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Steps 3 & 4. Each vari- |
able is a two column
matrix. Each row is the |
| vector for the corre-
sponding x.

When this script file is executed in the Command Window the following figure is
created in the Figure Window:

10> ELECTRIC FIELD DUE TO AN ELECTRIC DIPOLE
3 T T T T T T T T T

Magnitude of the electric field (N/C)
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Position along the x-—axis (m}

5.13 PROBLEMS

1. Plot the function £{(¢) = (x+5) for -3<x<5.
4 + 3x2

2. Plot the function £¢) = Ssin(x) _ 3x for -5<x<10.
x+e0Bx 5

3. Make two separate plots of the function fix) = (x+ 1)(x—2)(2x-0.25)-e*,
one plot for 0 <x <3 and one for -3<x<6.

4. Use the fplot command to plot the function
S(x) = Jlcos(3x)| + sin2(4x) inthe domain -2 <x<2.
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5. Usethe fplot command to plot the function
Sx) = e2sin(0405c0s(4x)  in the domain —20 <x <30.

6. A parametric equation is given by
x = L.5sin(5¢), y = 1.5cos(3¢)
Plot the function for 0 <7<2x. Format the plot such that the both axes will
range from -2 to 2.

7. Plot the function f(x) = % for -4 <x<3. Notice that the function
O(X

has a vertical asymptote at x = —1 . Plot the function by creating two vectors
for the domain of x. The first vector (name it x1) includes elements from —4 to
—1.1, and the second vector (name it x2) includes elements from —0.9 to 3. For
each x vector create a y vector (mane them »1 and »2) with the corresponding
values of y according to the function. To plot the function make two curves in
the same plot (y1 vs. x1, and y2 vs. x2). :

8. A parametric equation is given by

3t _ 32
1+6° Y T 1+p
(Note that the denominator approaches 0 when ¢ approaches —1) Plot the func-
tion (the plot is called the Folium of Descartes) by plotting two curves in the
same plot—one for -30 <7<-1.6 and the other for ~0.6 <7< 40.

X =

2_4x_ . .
9. Plot the function f{x) = w for -6 <x<6. Notice that the function
X ~-x-6
has two vertical asymptotes. Plot the function by dividing the domain of x into
three parts: one from —6 to near the left asymptote, one between the two
asymptotes, and one from near the right asymptote to 6. Set the range of the y
axis from —20 to 20.

10. A cycloid is a curve (shown in the fig-
ure) traced by a point on a circle that
rolls along a line. The parametric equa-
tion of a cycloid is given by

x = r(t-sint) and y = r(z- cost)
Plot a cycloid with » = 1.5 and 0 <r<4rx.

11. Plot the function f(x) = cosxsin(2x) and its derivative, both on the same
plot, for n<x <. Plot the function with a solid line, and the derivative with
a dashed line. Add a legend and label the axes.
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12.

13.

14.

15.

16.

The Gateway Arch in St. Louis is shaped according to the equation

y = 693.8-68. 8cosh(99 7) ft

Make a plot of the arch.
An electrical circuit that includes a voltage source o
. . . . Vs p.| Battery
vy with an internal resistance rg and a load resis- | 5|
tance R, is shown in the figure. The power P dissi- _{__'J___“ Y '
pated in the load is glven by
VoR
p=—t_ Ry
(Ry+75)° AMMW

Plot the power P as a function of R, for
1<R; <10Q, giventhat vg = 12V and rg = 2.5 Q.

Two ship, 4 and B, travel at a speed of ;

v, = 27mi/h and vy = 14mi/h, respectively. A |+—36 mi — &00
The directions they are moving and their loca- 15 mi_I_ \ :A I x
tion at 8 A.M. are shown in the figure. Plot the F~</]
distance between the ships as a function of ASmi v /300
time for the next 4 hours. The horizontal axis Bl

should show the actual time of day starting at 8 ‘l@

A.M., while the vertical axis should show the |

distance. Label the axes. 18 mi

The plasma concentration C, of orally delivered drugs is a function of the
rate of absorption, K, , and the rate of elimination, K,

Cp =4 (e7Ket! - g7Kart)

Kab KeI
where 4 is a constant (associated with the specific drag) and ¢ is time. Con-
sider a case where 4 = 140 mg/L, K,, = 1.6 h"!, and K, = 0.45h'. Make a
plot that displays C, vs.timefor 0<¢<10.

The position as a function of time of a squirrel y
running on a grass field is given in polar coor-
dinates by:

r(£) = 20 +30(1 —e®)m e@@ o0\
0(t) = n(1 -e02) —t—t
(a) Plot the trajectory (position) of the squirrel for 0 <7<20 s.

(b) Create a (second) plot for the speed of the squirrel, given by v = r% , as

a function of time for 0 <¢#<20 s.
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17. In astronomy, the relationship between the relative luminosity Z/Lg,,
(brightness relative to the sun), the relative radius R/Rg,, , and the relative
temperature 7/Ty,, of a star is modeled by:

== (7o) ()
LSun - RSun TSun

The HR (Hertzsprung-Russell) diagram is a plot of L/L sun VETSUS the temper-

ature. The following data is given:

Sun | Spica | Regulus| Alioth | Barnard’s Epsilon| Beta

Star Indi | Crucis

Temp (K) 5,840 1 22,400 | 13,260 | 9.400 | 3,130 4,280 | 28,200

L/Lg,, 1 13,400 150 108 0.0004 0.15 | 34,000
R/Rg,, 1 7.8 3.5 3.7 0.18 0.76 8

To compare the data with the model, use MATLAB to plot an HR diagram.
The diagram should have two sets of points. One uses the values of L/Lg,,
from the table (use asterisk markers), and the other uses values of L/Lg, = that
are calculated from the equation by using R/Rg,, from the table (use circle
markers). In the HR diagram both axes are lo garithmic. In addition, the values
of temperature on the horizontal axis are decreasing from left to right. This is
done with the command set (gca, 'XDir', 'reverse'). Label the axes
and use a legend.

18. The position x as a function of time of a particle that moves along a straight
line is given by
x(1) = 04114~ 10.8£ + 6412 - 821+ 4.4 fi

The velocity () of the particle is determined by the derivative of x(¢) with
respect to 4, and the acceleration a(#) is determined by the derivative of w()
with respect to +.

Derive the expressions for the velocity and acceleration of the particle,
and make plots of the position, velocity, and acceleration as functions of time
for 0<r<8s. Use the subplot command to make the three plots on the
same page with the plot of the position on the top, the velocity in the middle,
and the acceleration at the bottom. Label the axes appropriately with the cor-
rect units.
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20.

19.

In a typical tension test a dog bone LO"‘

shaped specimen is pulled in a p ——_l | ~——1 F

machine. During the test, the force F ~€—— —t>
|

needed to pull the specimen and the
length L of a gauge section are measured. This data is used for plotting a
stress-strain diagram of the material. Two definitions, engineering and true,
exist for stress and strain. The engineering stress o, and strain ¢, are defined

by

-L e
G, = £ and g, = ® where L, and 4, are the initial gauge length and the
0 0
initial cross-sectional area of the specimen, respectively. The true stress o,

and strain ¢, are defined by o, = FL and g = mL

AOL 0 LO

The following are measurements of force and gauge length from a tension
test with an aluminum specimen. The specimen has a round cross section with
radius 6.4 mm (before the test). The initial gauge length is L, = 25 mm. Use
the data to calculate and generate the engineering and true stress-strain curves,
both on the same plot. Label the axes and label the curves.
Units: When the force is measured in newtons (N), and the area is calculated
in m2, the unit of the stress is pascals (Pa).

F(N) 0 13,345 26,689 | 40,479 | 42,703 | 43,592 | 44,482 | 44,927
L (mm)|| 25 [25.037|25.073|25.113|25.122(25.125|25.132| 25.144
F(N) ||45372|46,276 | 47,908 | 49,035 | 50,265 | 53,213 | 56,161

L (mm)|| 25.164 | 25.208 | 25.409 | 25.646 | 26.084 | 27.398 | 29.150

The area of the aortic valve, 4, in cm?, can be estimated by the equation
(Hakki Formula)
A, = Q0
JPG

where Q is the cardiac output in L/min, and PG is the difference between the
left ventricular systolic pressure and the aortic systolic pressure (in mm Hg).
Make one plot with two curves of 4, versus PG, for 2< PG <60 mm Hg—
one curve for QO = 4 L/min and the other for Q = 5L/min. Label the axes and
use a legend.
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21. A series RLC circuit with an AC voltage source R
is shown. The amplitude of the current, /, in this -
circuit is given by

I= Vi

JR + (0L~ 1/(0,0))

where o, = 2nf, in which Ja is the driving fre-
quency; R and C are the resistance of the resistor and capacitance of the
capacitor, respectively; and v, is the amplitude of ¥ For the circuit in the fig-
ure R =800 C=18x10"F, L = 260 x 10" H,and v, = 10V,

Make a plot of 7 as a function of Ja for 10 <£< 10000 Hz. Use a linear
scale for 7 and a log scale for S

22. The speed distribution, N(v), of gas molecules can be modeled by Maxwell’s
speed distribution law:

N(»v) = 4n(2:/iT) 3/zvzem
where m (kg) is the mass of each molecule, v (m/s) is the speed, T (K) is the
temperature, and k£ = 1.38 x 10-23 J/K is Boltzmann’s constant. Make a plot of
N(v) versus v for 0 < v < 1200m/s for oxygen molecules (m = 5.3 x 10-26kg).
Make two graphs in the same plot, one for 7 = 80K and the other for
T = 300 K. Label the axes and display a legend.

23. A resistor, R=4 Q and an inductor, L = 1.3 H, are connected in a circuit to a
voltage source as shown in Figure (a) (an RL circuit). When the voltage

i(t) V (V) 4
12
4
O -
@ (b)O.S t (s)

source applies a rectangular voltage pulse with an amplitude of ¥=12V and a
duration of 0.5 s, as shown in Figure (b), the current i(#) in the circuit as a
function of time is given by:

i(r) = £(1 —eRy for 0<1<05 s
i(f) = e ®Y Lg(e(O'SR)/L— 1) for 0.5<¢ s

Make a plot of the current as a function of time for 0<7<2 s.
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25.

G'(®) = Gw{l +EIn

26.

169

24. The shape of a symmetrical four digit NACA airfoil is described by the equa-

tion

2 3 4
y = iLc—[O.2969A/):C—0.12601—6—0.3516()—6) +0.2843(’-‘) —0.1015()—‘) J
0.2 C C c C c

where c is the cord length and 7 is the max-

imum thickness as a fraction of the cord O'T ——

length (7¢ =maximum thickness). Sym- °’ T
metrical four digit NACA airfoils are des-  °

ignated NACA 00XX, where XX is 100 —

(i.e., NACA 0012 has ¢ = 0.12). Plot the °% 05 i 15

shape of a NACA 0020 airfoil with a cord
length of 1.5 m.

The dynamic storage modulus G’ and loss modulus G'* are measures of a
material mechanical response to harmonic loading. For many biological mate-
rials these moduli can be described by Fung’s model: '

1+ (0312)2
2 l:l + (0)‘!.'1)2
where o is the frequency of the harmonic loading, and G,,c, 1, and 1, are
material constants. Plot G’ and G'' versus o (two separate plots on the same
page) for G, = 5ksi, ¢ = 0.05, 1, = 0.05s, and T, = 500s. Let @ vary
between 0.0001 and 1000 s-'. Use a log scale for the  axis.

:l} and G''(0) = cG[tan! (w1,) - tan~! (w1,)]

The vibrations of the body of a helicopter due
to the periodic force applied by the rotation of >
the rotor can be modeled by a frictionless 1
spring-mass-damper system subjected to an
external periodic force. The position x(r) of
the mass is given by the equation:

2y L (0,-®\  (0,-®
x(t)=0)2 Cl)zsm( 5 t)sm( 3 t)

where F(#) = Fysinot, and f, = Fy/m, o is the frequency of the applied
force, and o, is the natural frequency of the helicopter. When the value of ®
is close to the value of ,, the vibration consists of fast oscillation with

slowly changing amplitude called beat. Use Fo/m = 12N/kg, ®, = 10rad/s,
and ® = 12rad/s to plot x(¢) as a function of 7 for 0 << 10s.
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27. Consider the diode circuit shown in the fig- W\/\/
ure. The current i;, and the voltage v,, can be R
determined from the solution of the following v i’D
system of equations: - /l’D .
. %) . S Diode
1D=10(e —1), 1D=—R—

The system can be solved numerically or

graphically. The graphical solution is found by plotting i p as a function of v,
from both equations. The solution is the intersection of the two curves. Make
the plots and estimate the solution for the case where I, = 10714 A,

ve=15V, R = 1200 @, and ¥ = 30mV.
q

28. The ideal gas equation states that ;—; = n, where P is the pressure, V is the
volume, 7 is the temperature, R = 0.08206 (L atm)/(mol K) is the gas con-
stant, and # is the number of moles. For one mole (7 = 1 ) the quantity % is

a constant equal to 1 at all pressures. Real gases, especially at high pressures,
deviate from this behavior. Their response can be modeled with the van der
Waals equation

nRT n2q

V_nb 12
where a and b are material constants. Consider 1 mole (# = 1 ) of nitrogen
gas at T = 300K. (For nitrogen gas a = 1.39 (L2 atm)/mol?, and b = 0.0391
L/mol.) Use the van der Waals equation to calculate P as a function of ¥ for
0.08 < V<6L, using increments of 0.02 L. At each value of ¥ calculate the
value of % and make a plot of % versus P. Does the response of nitrogen

agree with the ideal gas equation?

29. When monochromatic light passes through a Incident
narrow slit it produces on a screen a diffraction light
pattern consisting of bright and dark fringes.

The intensity of the bright fringes, /, as a func- e
tion of 6 can be calculated by A 19__ i

-
-

sinot)?

I =1 (—-) , where o = 2sine
o A

max

where A is the light wave length and « is the

width of the slit. Plot the relative intensity

1/1,,,, as afunction of & for —20° < 0 <20°. Make one plot that contains three
graphs for the cases @ = 10h, a = 54 ,and @ = A . Label the axes, and dis-
play a legend.
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30.

31.

32

171

In order to supply fluid to point D, a new pipe
CD with diameter of d, is connected to an
existing pipe with diameter of 4, at point C
between points 4 and B. The resistance, R, to
fluid flow along the path 4CD is given by
—L,cot® L,

K+

R = ;
rt ¥3sin®

where K is a constant. Determine the location of point C (the distance s) that
minimizes the flow resistance R. Define a vector 8 with elements ranging
from 30° to 85° with spacing of 0.5°. Calculate R/K for each value of 6,
and make a plot of R/K versus 8. Use MATLAB’s built-in function min to
find the minimum value of R/K and the corresponding 6, and then calculate
the value of 5. Use d; = 1.75in., d, = 1.5in., L, = 50ft, L, = 40 ft.

A simply supported beam is sub-
jected to a constant distributed load w
over half of its length and a moment
M, as shown in the figure. The deflec-
tion y, as a function of x, is given by
the equations

X (32 _3Lx+2L%) for 0<x s%

WX (16x3 - 24Lx2+9L%) +

Y= 384E1 6EIL

Mx
3 2 2+_713
L (83 _24Lx + 1712~ )+6EIL

1
2 2 SL<x<
384EI (x2-3Lx +2L?) for SLsx<L

where E is the elastic modulus, 7 is the moment of inertia, and L is the length
of the beam. For the beam shown in the figure L = 20m, E = 200 x 10° Pa

(steel), 7 = 348 x 10°m*, w = 5.4 x 10°N/m,and M = 200 x 10> N m. Make
a plot of the deflection of the beam y as a function of x.

The ideal gas law relates the pressure P, volume ¥, and temperature T of an
ideal gas:

PV = nRT
where »n is the number of moles and R = 8.3145 J/(K mol). Plots of pressure
versus volume at constant temperature are called isotherms. Plot the isotherms

for one mole of an ideal gas for volume ranging from 1 to 10 m’>, at tempera-
tures of T = 100, 200, 300, and 400K (four curves in one plot). Label the
axes and display a legend. The units for pressure are Pa.
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33. The voltage difference v,, between points 4
and B of the Wheatstone bridge circuit is
given by:

R R
Vap = V(Rl +2R2_R3 +4R4)
Consider the case where v =12V,
Ry = R, = 250 Q, and make the following plots:
(a) v,p versus R, for 0<R <500 Q,given R, = 120 Q.
(b) v,p versus R, for 0<R,<500 Q, given R, = 120 Q.
Plot both plots on a single page (two plots in a column).

34. The resonant frequency f (in Hz) for the circuit
shown is given by:

r=Llic RC-L

2ny Ric-L

Given L = 02H, C = 2 x 10°F, make the fol-
lowing plots:
(a) f versus R, for 500<R,<2000 Q, given

R, = 1500 Q.
(b) f versus R, for 500 <R, <2000 Q, given
R, = 1500 Q.

Plot both plots on a single page (two plots in a column).

35. The taylor series for sin(x) is:
¥} xd X7 X% x .
R TRE TR TT 1
Plot the figure on the right, which 2 |
shows, for -2n <x <2n, the graph
of the function sin(x) and graphs of -1
the Taylor series expansion of
sin(x) with one, two, and five 3 -6 =4 -2 9
terms. Label the axes and display a
legend.

N
~.

— sin(x)
1=+« One term
“““ Two terms

= = Three term:




